Skip to main content
Log in

Neurotransmitters, neuropeptides and binding sites in the rat mediobasal hypothalamus: effects of monosodium glutamate (MSG) lesions

  • Regular Papers
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Summary

Indirect immunofluorescence histochemistry and receptor autoradiography were used to study the localization of transmitter-/peptidecontaining neurons and peptide binding sites in the mediobasal hypothalamus in normal rats and in rats treated neonatally with repeated doses of the neurotoxin monosodium-glutamate (MSG). In the arcuate nucleus, the results showed a virtually complete loss of cell bodies containing immunoreactivity for growth hormone-releasing factor (GRF), galanin (GAL), dynorphin (DYN), enkephalin (ENK), corticotropin-like intermediate peptide (CLIP), neuropeptide Y (NPY), and neuropeptide K (NPK). Tyrosine hydroxylase(TH)-, glutamic acid decarboxylase(GAD)-, neurotensin(NT)- and somatostatin(SOM)-immunoreactive (IR) cells were, however, always detected in the ventrally dislocated, dorsomedial division of the arcuate nucleus. In the median eminence, marked decreases in numbers of GAD-, NT-, GAL-, GRF-, DYN-and ENK-IR fibers were observed. The numbers of TH-, SOM-and NPY-IR fibers were in contrast not or only affected to a very small extent, as revealed with the immunofluorescence technique. Biochemical analysis showed a tendency for MSG to reduce dopamine levels in the median eminence of female rats, whereas no effect was observed in male rats. Autoradiographic studies showed high to moderate NT binding sites, including strong binding over presumably dorsomedial dopamine cells. In MSG-treated rats, there was a marked reduction in GAL binding in the ventromedial nucleus. The findings implicate that most neurons in the ventrolateral and ventromedial arcuate nucleus are sensitive to the toxic effects of MSG, whereas a subpopulation of cells in the dorsomedial division of the arcuate nucleus, including dopamine neurons, are not susceptible to MSG-neurotoxicity. The results indicate, moreover that the very dense TH-IR fiber network in the median eminence predominantly arises from the dorsomedial TH-IR arcuate cells, whereas the GAD-, NT-, GAL-, GRF-and DYN-IR fibers in the median eminence to a large extent arise from the ventrolateral arcuate nucleus. Some ENK-and NPK-positive cells in the arcuate nucleus seem to project to the lateral palisade zone of the median eminence, but most of the ENK-IR fibers in the median eminence, located in the medial palisade zone, seem to primarily originate from an area(s) located outside the arcuate nucleus, presumably the paraventricular nucleus. The NPY-positive fibers in the median eminence contain to a large extent immunoreactive dopamine β-hydroxylase (DBH), and do not arise from the ventromedial arcuate nucleus. SOM-IR cells in the dorsal periventricular arcuate nucleus do not send major projections to the median eminence. The present findings thus show that MSG treatment represents a valuable tool to clarify the organization of chemically identified neuron populations in the arcuate nucleus-median eminence complex and provide further information for understanding the neuroendocrine effects of neonatal MSG treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agid Y, Javoy F, Glowinski J (1973) Hyperactivity of remaining dopaminergic neurons after partial destruction of the nigrostriatal dopaminergic system in the rat. Nature 245:150–151

    Google Scholar 

  • Ajika K, Hökfelt T (1975) Projections to the median eminence and the arcuate nucleus with special reference to monoamine systems: effects of lesions. Cell Tiss Res 158:15–35

    Google Scholar 

  • Antoni FA, Kanyicska B, Mezey E, Makara GB (1982) Neona-tal treatment with monosodium-L-glutamate: differential effects in growth hormone and prolactin release induced by morphine. Neuroendocrinology 35:231–235

    Google Scholar 

  • Badger TM, Millard WJ, Martin JB, Rosenblum PM, Levenson SE (1982) Hypothalamic-pituitary function in adult rats treated neonatally with monosodium glutamate. Endocrinology 111:2031–2038

    Google Scholar 

  • Bai FL, Yamano M, Shiotani Y, Emson P, Smith AD, Powell JF, Tohyama M (1985) An arcuato-paraventricular and dorsomedial hypothalamic neuropeptide Y-containing system which lacks noradrenaline in the rat. Brain Res 331:172–175

    Google Scholar 

  • Bakke JL, Lawrence N, Bennet J, Robinson S, Bowers CY (1978) Late endocrine effects of administering monosodium glutamate to neonatal rats. Neuroendocrinology 26:220–228

    Google Scholar 

  • Barry J, Hoffman GE, Wray S (1985) LHRH-containing systems. In: Björklund A, Hökfelt T (eds) Handbook of chemical neuroanatomy, Vol. 4. GABA and neuropeptides in the CNS, Part 1. Elsevier, Amsterdam, pp 166–215

    Google Scholar 

  • Björklund A, Lindvall O (1984) Dopamine-containing systems in the CNS. In: Björklund A, Hökfelt T (eds) Handbook of chemical neuroanatomy, Vol. 2. Classical transmitters in the CNS, Part 1. Elsevier, Amsterdam, pp 55–122

    Google Scholar 

  • Bloch B, Ling N, Benoit R, Wehrenberg WB, Guillemin R (1984) Specific depletion of immunoreactive growth hormone-releasing factor by monosodium glutamate in rat median eminence. Nature 307:272–273

    Google Scholar 

  • Brownstein MJ, Arimura A, Fernandez-Durango R, Schally AV, Palkovits M, Kizer JS (1977) The effect of hypothalamic deafferentation on somatostatin-like immunoreactivity in rat brain. Endocrinology 100:246–249

    Google Scholar 

  • Buchan AMJ, Sikora LKJ, Levy JG, McIntosh CHS, Dyck I, Brown JC (1985) An immunocytochemical investigation with monoclonal antibodies to somatostatin. Histochemistry 83:175–180

    Google Scholar 

  • Carson KA, Nemeroff CB, Rone MS, Youngblood WW, Prange AJ, Hanker JS, Kizer JS (1977) Biochemical and histochemical evidence for the existence of a tuberoinfundibular cholinergic pathway in the rat. Brain Res 129:169–173

    Google Scholar 

  • Ceccatelli S, Eriksson M, Hökfelt T (1989) Distribution and coexistence of CRF-, neurotensin-, enkephalin-, cholecystokinin-, galanin-and VIP/PHI-like peptides in the parvocellular part of the paraventricular nucleus. Neuroendocrinology 49:309–323

    Google Scholar 

  • Chronwall BM, Chase TN, O'Donohue TL (1984) Coexistence of neuropeptide Y and somatostatin in rat and human cortical neurons and rat hypothalamic neurons. Neurosci Lett 52:213–217

    Google Scholar 

  • Clemens JA, Roush ME, Fuller RW, Shaar CJ (1978) Changes in luteinizing hormone and prolactin control mechanisms produced by glutamate lesions of the arcuate nucleus. Endocrinology 103:1304–1312

    Google Scholar 

  • Coons AH (1958) Fluorescent antibody methods. In: Danielli JF (ed) General cytochemical methods. Academic Press, New York, pp 399–422

    Google Scholar 

  • Critchlow V, Rice RW, Abe K, Vale WW (1978) Somatostatin content of the median eminence in female rats with lesioninduced disruption of the inhibitory control of growth hormone secretion. Endocrinology 103:817–825

    Google Scholar 

  • Crowley WR, Terry LC (1980) Biochemical mapping of somatostatinergic systems in rat brain: effects of periventricular and medial basal amygdaloid lesions on somatostatin-like immunoreactivity in discrete brain nuclei. Brain Res 200:283–291

    Google Scholar 

  • Dada MO, Blake CA (1985) Monosodium-L-glutamate administration: effects on gonadotrophin secretion, gonadotrophs and mammotrophs in prepubertal rats. J Endocrinol 104:185–192

    Google Scholar 

  • Dahlström A, Fuxe K (1964) Evidence for the existence of monoamine-containing neurons in the central nervous system. I. Demonstration of monoamines in cell bodies of brain stem neurons. Acta Physiol Scand 62: Suppl 232:1–55

    Google Scholar 

  • Daikoku S, Kawano H, Noguchi M, Nakanishi J, Tokuzen M, Chihara K, Nagatsu I (1986) GRF neurons in the rat hypothalamus. Brain Res 399:250–261

    Google Scholar 

  • Davis TME, Burrin JM, Bloom SR (1987) Growth hormone (GH) release in response to GH-releasing hormone in man is 3-fold enhanced by galanin. J Clin Endocrinol Metab 65:1248–1252

    Google Scholar 

  • Dawson R Jr., Valdes JJ, Annau Z (1985) Tuberohypophyseal and tuberoinfundibular dopamine systems exhibit differential sensitivity to neonatal monosodium glutamate treatment. Pharmacology 31:17–23

    Google Scholar 

  • De Quidt ME, Emson PC (1985) Distribution of neuropeptide Y-like immunoreactivity in the rat central nervous system. II. Immunohistochemical analysis. Neuroscience 18:545–618

    Google Scholar 

  • Elde RP, Hökfelt T (1978) Distribution of hypothalamic hormones and other peptides in the brain. In: Ganong WF, Martini L (eds) Frontiers in neuroendocrinology, Vol 5. Raven Press, New York, pp 1–33

    Google Scholar 

  • Emson PC, Goedert M, Mantyh PW (1985) Neurotensin-containing neurons. In: Björklund A, Hökfelt T (eds) Handbook of chemical neuroanatomy, Vol. 4. GABA and neuropeptides in the CNS, Part 1. Elsevier, Amsterdam, pp 355–405

    Google Scholar 

  • Enjalbert A, Arancibia S, Priam M, Bluet-Pajot MT, Kordon C (1982) Neurotensin stimulation of prolactin secretion in vitro. Neuroendocrinology 34:95–98

    Google Scholar 

  • Everitt BJ, Hökfelt T, Wu J-Y, Goldstein M (1984a) Coexistence of tyrosine hydroxylase-like and gamma-aminobutyric acid-like immunoreactivities in neurons of the arcuate nucleus. Neuroendocrinology 39:189–191

    Google Scholar 

  • Everitt BJ, Hökfelt T, Terenius E, Tatemoto K, Mutt V, Goldstein M (1984b) Differential co-existence of neuropeptide Y (NPY)-like immunoreactivity with catecholamines in the central nervous system of the rat. Neuroscience 11:443–462

    Google Scholar 

  • Everitt BJ, Meister B, Hökfelt T, Melander T, Terenius E, Rökaeus Å, Theodorsson-Norheim E, Dockray G, Edwardson J, Cuello C, Elde R, Goldstein M, Hemmings H, Ouimet C, Walaas I, Greengard P, Vale W, Weber E, Wu J-Y, Chang K-J (1986) The hypothalamic arcuate nucleus-median eminence complex: immunohistochemistry of transmitters, peptides and DARPP-32 with special reference to coexistence in dopamine neurons. Brain Res Rev 11:97–155

    Google Scholar 

  • Felice EJ, Felice JD, Kissinger PT (1978) Determination of catecholamines in rat brain parts by reverse-phase ion-pair liquid chromatography. J Neurochem 31:1461–1465

    Google Scholar 

  • Frey P (1983) Cholecystokinin octapeptide (CCK 26–33), nonsulfated octapeptide and tetrapeptide (CCK 30–33) in rat brain: analysis by high pressure liquid chromatography (HPLC) and radioimmunoassay (RIA). Neurochem Int 5:811–815

    Google Scholar 

  • Fuxe K (1964) Cellular localization of monoamines in the median eminence and infundibular stem of some mammals. Z Zellforsch 61:719–724

    Google Scholar 

  • Fuxe K, Hökfelt T (1966) Further evidence for the existence of tubero-infundibular dopamine neurons. Acta Physiol Scand 66:245–246

    Google Scholar 

  • Fuxe K, Hökfelt T (1971) Histochemical fluorescence detection of changes in central monoamine neurones provoked by drugs acting on the CNS. Triangle, Sandoz Journal of Medical Science 10:73–84

    Google Scholar 

  • Fuxe K, Hökfelt T, Löfström A, Johansson O, Agnati E, Everitt B, Goldstein M, Jeffcoate S, White N, Eneroth P, Gustafsson J-Å (1976) On the role of neurotransmitters and hypothalamic hormones and their interactions in hypothalamic and extrahypothalamic control of pituitary function and sexual behavior. In: Naftolin F, Ryan KJ, Davies J (eds) Subcellular mechanisms in reproductive neuroendocrinology. Elsevier, Amsterdam, pp 193–246

    Google Scholar 

  • Fuxe K, Andersson K, Agnati E, Ferland E, Hökfelt T, Eneroth P, Gustafsson J-Å (1980) Hypothalamic monoamine pathways and their possible role in disturbances of the secretion of hormones from the anterior pituitary gland. In: Faglia G, Giovanelli MA, MacLeod RM (eds) Pituitary microadenomas. Academic Press, New York, pp 15–35

    Google Scholar 

  • Fuxe K, Agnati EF, Andersson K, Eneroth P, Härfstrand A, Goldstein M, Zoli M (1984) Studies on neurotensin-catecholamine interactions in the hypothalamus and in the forebrain of the male rat. Neurochem Int 6:737–750

    Google Scholar 

  • Fuxe K, Agnati E, Kalia M, Goldstein M, Andersson K, Härfstrand A (1985) Dopaminergic systems in the brain and pituitary. In: Flückiger E, Müller EE, Thorner MO (eds) The dopaminergic system. Springer, Berlin, pp 11–25

    Google Scholar 

  • Goldstein M, Anagnoste B, Freedman ES, Roffman M, Ebstein RP, Park DH, Fuxe K, Hökfelt T (1973) Characterization, localization and regulation of catecholamine-synthesizing enzymes. In: Usdin E, Snyder S (eds) Frontiers in catecholamine research. Pergamon Press, New York, pp 69–78

    Google Scholar 

  • Gabriel SM, MacGarvey UM, Koenig JI, Swartz KJ, Martin JB, Beal MF (1988) Characterization of galanin-like immunoreactivity in the rat brain: effects of neonatal glutamate treatment. Neurosci Lett 87:114–126

    Google Scholar 

  • Greeley GH, Nicholson GF, Nemeroff CB, Youngblood WW, Kizer JS (1978) Direct evidence that the arcuate nucleusmedian eminence tuberoinfundibular system is not of primary importance in the feedback regulation of luteinizing hormone and follicle-stimulating hormone secretion in the castrated rat. Endocrinology 103:170–175

    Google Scholar 

  • Greeley GH, Nicholson GF, Kizer JS (1980) A delayed EH/ FSH rise after gonadectomy and a delayed serum TSH rise after thyroidectomy in monosodium-E-glutamate(MSG)-treated rats. Brain Res 195:111–122

    Google Scholar 

  • Hökfelt T, Fahrenkrug J, Tatemoto K, Mutt V, Werner S, Hulling A-E, Terenius E, Chang KJ (1983) The PHI (PHI-27)/ corticotropin-releasing factor/enkephalin immunoreactive hypothalamic neuron: possible morphological basis for integrated control of prolactin, corticotropin, and growth hormone secretion. Proc Natl Acad Sci USA 80:985–989

    Google Scholar 

  • Hökfelt T, Everitt BJ, Theodorsson-Norheim E, Goldstein M (1984) Occurrence of neurotensin like immunoreactivity in subpopulations of hypothalamic, mesencephalic and medullary catecholamine neurons. J Comp Neurol 222:543–549

    Google Scholar 

  • Hökfelt T, Meister B, Everitt B, Staines W, Melander T, Schalling M, Mutt V, Hulting A-E, Werner S, Bartfai T, Nordström Ö, Fahrenkrug J, Goldstein M (1987) Chemical neuroanatomy of the hypothalamo-pituitary axis: focus on multimessenger systems. In: McCann SM, Weiner RI (eds) Integrative neuroendocrinology: molecular cellular and clinical aspects. Karger, Basel, pp 1–34

    Google Scholar 

  • Holzwarth-McBride MA, Hurst EM, Knigge KM (1976a) Monosodium glutamate induced lesions of the arcuate nucleus. I. Endocrine deficiency and ultrastructure of the median eminence. Anat Rec 186:185–196

    Google Scholar 

  • Holzwarth-McBride MA, Sladek JR, Knigge KM (1976b) Monosodium glutamate induced lesions of the arcuate nucleus. II. Fluorescence histochemistry of catecholamines. Anat Rec 186:197–206

    Google Scholar 

  • Ibata Y, Fukui K, Okamura H, Kawakami T, Tanaka M, Obata HL, Tsuto T, Terubayashi H, Yanaihara C, Yanaihara N (1983) Coexistence of dopamine and neurotensin in hypothalamic arcuate and periventricular neurons. Brain Res 269:177–179

    Google Scholar 

  • Ibata Y, Kawakami F, Fukui K, Obata-Tsuto HL, Tanaka M, Kubo T, Okamura H, Moimoto N, Yanaihara C, Yanaihara N (1984) Light and electron microscopic immunocytochemistry of neurotensin-like immunoreactive neurons in the rat hypothalamus. Brain Res 302:221–230

    Google Scholar 

  • Ishikawa K, Taniguchi Y, Kurosumi K, Suzuki M, Shinoda M (1987) Immunohistochemical identification of somatostatin-containing neurons projecting to the median eminence of the rat. Endocrinology 121:94–97

    Google Scholar 

  • Jaeger CB, Ruggiero DA, Albert VR, Park DH, Joh TH, Reis DJ (1984) Aromatic L-amino acid decarboxylase in the rat brain: immunohistochemical localization in monoamine and non-monoamine neurons of the brain stem. Neuroscience 11:691–713

    Google Scholar 

  • Jennes L, Stumpf WE, Kalivas PW (1982) Neurotensin: topographical distribution in rat brain by immunohistochemistry. J Comp Neurol 210:211–224

    Google Scholar 

  • Jennes L, Stumpf WE, Bissette G, Nemeroff CB (1984) Monosodium glutamate lesions in rat hypothalamus studied by immunohistochemistry for gonadotropin releasing hormone, neurotensin, tyrosine hydroxylase, and glutamic acid decarboxylase and by autoradiography for (3H)estradiol. Brain Res 308:245–253

    Google Scholar 

  • Johansson O, Hökfelt T, Elde RP (1984) Immunohistochemical distribution of somatostatin-like immunoreactivity in the central nervous system of the adult rat. Neuroscience 13:265–339

    Google Scholar 

  • Johnson DG, De C Nogueira Araujo GM (1981) A simple method of reducing the fading of immunofluorescence during microscopy. J Immunol Methods 43:349

    Article  CAS  PubMed  Google Scholar 

  • Kahn D, Abrams G, Zimmerman EA, Carraway R, Leeman SE (1981) Neurotensin neurons in the rat hypothalamus: an immunocytochemical study. Endocrinology 107:47–53

    Google Scholar 

  • Kawano H, Daikoku S (1988) Somatostatin-containing neuron systems in the rat hypothalamus: retrograde tracing and immunohistochemical studies. J Comp Neurol 271:293–299

    Google Scholar 

  • Kawano H, Daikoku S, Saito S (1982) Immunohistochemical studies of intrahypothalamic somatostatin-containing neurons in rat. Brain Res 242:227–232

    Google Scholar 

  • Khachaturian H, Lewis ME, Schäfer MK-H, Watson SJ (1985) Anatomy of CNS opioid system. Trends Neurosci 8:111–119

    Google Scholar 

  • Kiss A, Palkovits M, Antoni FA, Eskay RL, Skirboll LR (1987) Neurotensin in the rat median eminence: possible sources of neurotensin-like fibers and varicosities in the external layer. Brain Res 416:129–135

    Google Scholar 

  • Koshiyama H, Kato Y, Shimatsu A, Katakami H, Yanaihara N, Imura H (1987) Central galanin stimulates pituitary prolactin secretion in rats: possible involvement of hypothalamic vasoactive intestinal polypeptide. Neurosci Lett 75:49–54

    Google Scholar 

  • Krieger DA, Liotta A, Nicholsen G, Kizer J (1979) Brain ACTH and endorphin reduced in rats with monosodium glutamate induced arcuate nuclear lesions. Nature 278:562–563

    Google Scholar 

  • Kyrkouli SE, Stanley BG, Leibovitz SF (1986) Galanin: stimulation of feeding induced by medial hypothalamic stimulation of this novel peptide. Eur J Pharmacol 122:159–160

    Google Scholar 

  • Lechan RM, Alpert LC, Jackson IMD (1976) Synthesis of luteinising hormone releasing factor and thyrotropin-releasing factor in glutamate-lesioned mice. Nature 264:463465

    Google Scholar 

  • Lechan RM, Nestler JL, Jacobson S (1982) The tuberoinfundibular system of the rat as demonstrated by immunohistochemical localization of retrogradely transported wheat germ agglutinin (WGA) from the median eminence. Brain Res 245:1–15

    Google Scholar 

  • Liposits Z, Merchenthaler I, Paull WK, Flerkó B (1988) Synaptic communication between somatostatinergic axons and growth hormone-releasing factor (GRF) synthesizing neurons in the arcuate nucleus of the rat. Histochemistry 89:247–252

    Google Scholar 

  • Ljungdahl Å, Hökfelt T, Nilsson G (1978) Distribution of substance P-like immunoreactivity in the central nervous system of the rat. I. Cell bodies and nerve terminals. Neuroscience 3:861–943

    Article  CAS  PubMed  Google Scholar 

  • Lundberg JM, Terenius L, Hökfelt T, Tatemoto K (1984) Comparative immunocytochemical and biochemical analysis of pancreatic polypeptide-like peptides with special reference to presence of neuropeptide Y in central and peripheral neurons. J Neurosci 4:2376–2386

    Google Scholar 

  • MacLeod RM, Lehmeyer JE (1974) Studies on the mechanism of dopamine-mediated inhibition of prolactin secretion. Endocrinology 94:1077–1085

    Google Scholar 

  • Maeda K, Frohman LA (1978) Dissociation of systemic and central effects of neurotensin on the secretion of growth hormone, prolactin, and thyrotropin. Endocrinology 103:1903–1908

    Google Scholar 

  • Makara GB, Kakucska I, Lenoir V, Kerdelhue B, Palkovits M (1986) A substance P-containing hypothalamic neuronal system projects to the median eminence. Brain Res 374:399–401

    Google Scholar 

  • Markey KA, Kondo S, Shenkman I, Goldstein M (1980) Purification and characterization of tyrosine hydroxylase from a clonal pheochromocytoma cell line. Mol Pharmacol 17:79–85

    Google Scholar 

  • McGinty JF, Bloom F (1983) Double immunostaining reveals distinctions among opioid peptidergic neurons in the medial basal hypothalamus. Brain Res 278:145–153

    Google Scholar 

  • Meister B, Hökfelt T (1988) Peptide-and transmitter-containing neurons in the mediobasal hypothalamus and their relation to GABAergic systems: possible roles in control of prolactin and growth hormone secretion. Synapse 2:585–605

    Google Scholar 

  • Meister B, Hökfelt T, Steinbusch HWM, Skagerberg G, Lindvall O, Geffard M, Joh TH, Cuello AC, Goldstein M (1988a) Do tyrosine hydroxylase-immunoreactive neurons in the ventrolateral arcuate nucleus produce dopamine or only L-DOPA J Chem Neuroanat 1:59–64

    Google Scholar 

  • Meister B, Hökfelt T, Geffard M, Oertel W (1988b) Glutamic acid decarboxylase-and γ-aminobutyric acid-like immunoreactivities in corticotropin-releasing factor-containing parvocellular neurons of the hypothalamic paraventricular nucleus. Neuroendocrinology 48:516–526

    Google Scholar 

  • Meister B, Hökfelt T, Tsuruo Y, Hemmings H, Ouimet C, Greengard P, Goldstein M (1988c) DARPP-32, a dopamine-and cyclic AMP-regulated phosphoprotein, in tanycytes of the mediobasal hypothalamus: distribution and relation to dopamine and luteinizing hormone-releasing hormone neurons and other glial elements. Neuroscience 27:607–622

    Google Scholar 

  • Melander T, Hökfelt T, Rökaeus Å (1986a) Distribution of galaninlike immunoreactivity in the rat central nervous system. J Comp Neurol 248:475–517

    Google Scholar 

  • Melander T, Hökfelt T, Rökaeus Å, Cuello AC, Oertel WH, Verhofstad A, Goldstein M (1986b) Coexistence of galaninlike immunoreactivity with catecholamines, 5-hydroxytryptamine, GABA and neuropeptides in the rat CNS. J Neurosci 6: 3640–3654

    Google Scholar 

  • Melander T, Fuxe K, Härfstrand A, Eneroth P, Hökfelt T (1987) Effects of intraventricular injections of galanin on neuroendocrine functions in the male rat: possible involvement of hypothalamic catecholamine nerve terminal systems. Acta Physiol Scand 131:25–32

    Google Scholar 

  • Melander T, Köhler C, Nilsson S, Hökfelt T, Brodin E, Theodorsson E, Bartfai T (1988) Autoradiographic quantitation and anatomical mapping of 125I-galanin binding sites in the rat central nervous system. J Chem Neuroanat 1:213–233

    Google Scholar 

  • Millard WJ, Martin JB Jr., Audet J, Sagar SM, Martin JB (1982) Evidence that reduced growth hormone secretion observed in monosodium glutamatetreated rats is the result of a deficiency in growth hormone-releasing factor. Endocrinology 110:540–550

    Google Scholar 

  • Murakami Y, Kato Y, Koshiyama H, Inoue T, Yanaihara N, Imura H (1987) Galanin stimulates growth hormone (GH) secretion via GH-releasing factor (GRF) in conscious rats. Eur J Pharmacol 136:415–418

    Google Scholar 

  • Nagasawa M, Yanai R, Kikuyama S (1974) Irreversible inhibition of pituitary prolactin and growth hormone secretion and of mammary gland development in mice by monosodium glutamate administered neonatally. Acta Endocrinol (Copenh) 75:249–259

    Google Scholar 

  • Nemeroff CB, Konkol RJ, Bissette G, Youngblood W, Martin JB, Brazeau P, Rone MS, Prange AJ Jr, Breese GR, Kizer JS (1977a) Analysis of the disruption in hypothalamic-pituitary regulation in rats treated neonatally with monosodium L-glutamate (MSG): evidence for the involvement of tuberoinfundibular cholinergic and dopaminergic systems in neuroendocrine regulation. Endocrinology 101:613–622

    Google Scholar 

  • Nemeroff CB, Grant LD, Bissette G, Ervin GN, Harreil LE, Prange AJ (1977b) Growth, endocrinological and behavioural deficits after monosodium L-glutamate in the neonatal rat: possible involvement of arcuate dopamine neuron damage. Psychoneuroendocrinology 2:179–196

    Google Scholar 

  • Nemeroff CB, Lipton MA, Kizer JS (1978) Models of neuroendocrine regulation: use of monosodium glutamate as an investigational tool. Dev Neurosci 1:102–109

    Google Scholar 

  • Nordström Ö, Melander T, Hökfelt T, Bartfai T, Goldstein M (1987) Evidence for an inhibitory effect of the peptide galanin on dopamine release from the rat median eminence. Neurosci Lett 73:21–26

    Article  PubMed  Google Scholar 

  • Norstedt G, Mode A, Hökfelt T, Eneroth P, Elde R, Ferland L, Labrie F, Gustafsson J-Å (1983) Possible role of somatostatin in the regulation of the sexually differentiated steroid metabolism and prolactin receptor in rat liver. Endocrinology 112:1076–1090

    Google Scholar 

  • Oertel WH, Schmechel DE, Tappaz ML, Kopin IJ (1981) Production of a specific antiserum to rat brain glutamic acid decarboxylase by injection of an antigen-antibody complex. Neuroscience 6:2689–2700

    Google Scholar 

  • Okamura H, Kitahama K, Nagatsu I, Geffard M (1988a) Comparative topography of dopamine- and tyrosine hydroxylase-immunoreactive neurons in the rat arcuate nucleus. Neurosci Lett 95:347–353

    Google Scholar 

  • Okamura H, Kitahama K, Raynaud B, Nagatsu I, Borri-Volttatorni C, Weber M (1988b) Aromatic L-amino acid decarboxylase(AADC)-immunoreactive cells in the tuberal region of the rat hypothalamus. Biomed Res 9:261–267

    Google Scholar 

  • Okamura H, Kitahama K, Mons N, Ibata Y, Jouvet M, Geffard M (1988c) L-DOPA-immunoreactive neurons in the rat tuberal region. Neurosci Lett 95:42–46

    Google Scholar 

  • Olney JW (1969) Brain lesions, obesity, and other disturbances in mice treated with monosodium glutamate. Science 164:719–721

    Google Scholar 

  • Olney JW (1971) Glutamate-induced neuronal necrosis in the infant mouse hypothalamus. J Neuropathol Exp Neurol 30:75–90

    Google Scholar 

  • Olney JW, Ho O (1970) Brain damage in infant mice following oral intake of glutamate, aspartate or cysteine. Nature 227:609–611

    Google Scholar 

  • Olney JW, Schainker B, Rhee V (1975) Chemical lesioning of the hypothalamus as a means of studying neuroendocrine function. In: Sachar E (ed) Hormones, behavior and psychopathology. Raven Press, New York, pp 153–158

    Google Scholar 

  • Ottlecz A, Samson WK, McCann SM (1985) Galanin: evidence for a hypothalamic site of action to release growth hormone. Peptides 7:51–53

    Google Scholar 

  • Ouimet CC, Miller PE, Hemmings HC Jr, Walaas SI, Greengard P (1984) DARPP-32, a dopamine-and cyclic adenosine-3′: 5′-monophosphate-regulated phosphoprotein enriched in dopamine-innervated brain regions. III. Immunocytochemical localization. J Neurosci 4:11–124

    Google Scholar 

  • Palkovits M (1986) Neuropeptides in the median eminence. Neurochem Int 9:131–139

    Google Scholar 

  • Palkovits M, Rökaeus Å, Antoni FA, Kiss A (1987) Galanin in the hypothalamo-hypophyseal system. Neuroendocrinology 46:417–423

    Google Scholar 

  • Patel YC, Hoyte K, Martin JB (1979) Effect of anterior hypothalamic lesions on neurohypophyseal and peripheral tissue concentrations of somatostatin in the rat. Endocrinology 105:712–715

    Google Scholar 

  • Perez VJ, Olney JW (1972) Accumulation of glutamic acid in the arcuate nucleus of the hypothalamus of the infant mouse following subcutaneous administration of monosodium glutamate. J Neurochem 19:1777–1782

    Google Scholar 

  • Pilcher WH, Joseph S (1986) Differential sensitivity of hypothalamic and medullary opiocortin and tyrosine hydroxylase neurons to the neurotoxic effects of monosodium glutamate. Peptides 7:783–789

    Google Scholar 

  • Pizzi WJ, Barnhart JE, Fanslow DJ (1977) Monosodium glutamate administration to the newborn reduces reproductive ability in female and male mice. Science 196:452–454

    Google Scholar 

  • Platt JL, Michael AF (1983) Retardation of fading and enhancement of intensity of immunofluorescence by p-phenylenediamine. J Histochem Cytochem 31:840–842

    Google Scholar 

  • Rao ZR, Yamano M, Wanaka A, Tatehata T, Shiosaka S, Tohyama M (1987) Distribution of cholinergic neurons and fibers in the hypothalamus of the rat using choline acetyltransferase as a marker. Neuroscience 20:923–934

    Google Scholar 

  • Redding TW, Schally AV, Arimura A, Wakabayashi I (1971) Effect of monosodium glutamate on some endocrine functions. Neuroendocrinology 8:245–255

    Google Scholar 

  • Robbins TW (1986) Hunger. In: Lightman SL, Everitt BJ (eds) Neuroendocrinology. Blackwell, London, pp 252–303

    Google Scholar 

  • Rökaeus Å, Melander T, Hökfelt T, Lundberg JM, Tatemoto K, Carlquist M, Mutt V (1984) A galanin-like peptide in the central nervous system and intestine of the rat. Neurosci Lett 47:161–166

    Google Scholar 

  • Romagnano MA, Chafel TL, Pilcher WH, Joseph S (1982a) The distribution of enkephalin in the mediobasal hypothalamus of the mouse brain: effects of neonatal administration of MSG. Brain Res 236:497–504

    Google Scholar 

  • Romagnano MA, Pilcher WH, Bennett-Clarke C, Chafel TL, Joseph SA (1982b) Distribution of somatostatin in the mouse brain: effects of neonatal MSG treatment. Brain Res 234:387–398

    Google Scholar 

  • Rose PA, Weick RF (1987) Evidence for reorganization of neuroendocrine centres regulating pulsatile LH secretion in rats receiving neonatal monosodium-L-glutamate. J Endocrinology 113:261–269

    Google Scholar 

  • Sawchenko PE, Swanson LW, Vale WW (1984) Co-expression of corticotropin-releasing factor- and vasopressin-immunoreactivity in parvocellular neurosecretory neurons of the adrenalectomized rat. Proc Natl Acad Sci USA 81:1883–1887

    Google Scholar 

  • Sawchenko PE, Swanson LW, Rivier J, Vale WW (1985a) The distribution of growth hormone-releasing factor (GRF)-immunoreactivity in the central nervous system of the rat: an immunohistochemical study using antisera directed against rat hypothalamic GRF. J Comp Neurol 237:100–115

    Google Scholar 

  • Sawchenko PE, Swanson L, Grzanna R, Howe PRC, Bloom SR, Polak JM (1985b) Colocalization of neuropeptide Y immunoreactivity in brain stem catecholaminergic neurons that project to the paraventricular nucleus of hypothalamus. J Comp Neurol 241:138–153

    Google Scholar 

  • Schultzberg M, Lundberg JM, Hökfelt T, Terenius L, Brandt J, Elde RP, Goldstein M (1978) Enkephalin-like immunore-activity in gland cells and nerve terminals of the adrenal medulla. Neuroscience 3:1169–1186

    Google Scholar 

  • Seal A, Liu E, Buchan A, Brown J (1988) Immunoneutralization of somatostatin and neurotensin: effect on gastric acid secretion. Am J Physiol 255:G40-G45

    Google Scholar 

  • Shimada S, Inagaki S, Kubota Y, Kito S, Shiotani Y, Tohyama M (1987) Coexistence of substance P- and enkephalin-like peptides in single neurons of the rat hypothalamus. Brain Res 425:256–262

    Google Scholar 

  • Simpson EL, Gold RM, Standish LJ, Pellett PL (1977) Axonsparing brain lesioning technique: the use of monosodiumL-glutamate and other amino acids. Science 198:515–517

    Google Scholar 

  • Skofitsch G, Jacobowitz DM (1985) Immunohistochemical mapping of galanin-like neurons in the rat central nervous system. Peptides 6:509–546

    Google Scholar 

  • Stoeckel ME, Tappaz M, Hindelang C, Seweryn C, Porte A (1985) Opposite effects of monosodium glutamate on the dopaminergic and GABAergic innervation of the median eminence and the intermediate lobe in the mouse. Neurosci Lett 56:249–255

    Google Scholar 

  • Tago H, McGeer PL, Bruce G, Hersch LB (1987) Distribution of choline acetyltransferase-containing neurons of the hypothalamus. Brain Res 415:49–62

    Google Scholar 

  • Tatemoto K, Lundberg JM, Jörnvall H, Mutt V (1985) Neuropeptide K: isolation, structure and biological activities of a novel brain tachykinin. Biochem Biophys Res Commun 128:947–953

    Google Scholar 

  • Tempel DL, Leibowitz KJ, Leibowitz SF (1988) Effects of PVN galanin on macronutrient selection. Peptides 9:309–314

    Google Scholar 

  • Terry LC, Epelbaum J, Martin JB (1981) Monosodium glutamate: acute and chronic effects on rhythmic growth hormone and prolactin secretion, and somatostatin in the undisturbed male rat. Brain Res 217:129–142

    Google Scholar 

  • Tramu G, Pillez A, Leonardelli J (1978) An efficient method of antibody elution for the successive or simultaneous location of two antigens by immunocytochemistry. J Histochem Cytochem 26:322–324

    Google Scholar 

  • Tsuruo Y, Kawano H, Hishiyama T, Hisano S, Daikoku S (1983) Substance P-like immunoreactive neurons in the tuberoinfundibular area of rat hypothalamus. Brain Res 289:1–9

    Google Scholar 

  • Valentino KL, Tatemoto K, Hunter J, Barchas JD (1986) Distribution of neuropeptide K-immunoreactivity in the rat central nervous system. Peptides 7:1043–1059

    Google Scholar 

  • Vijayan E, McCann SM (1979) Effects of substance P and neurotensin on gonadotropin and prolactin release. Endocrinology 105:64–68

    Google Scholar 

  • Vincent S, Hökfelt T, Christensson I, Terenius L (1982) Dynorphin-immunoreactive neurons in the central nervous system of the rat. Neurosci Lett 33:185–190

    Google Scholar 

  • Visser TJ, Klootwijk W, Doctor R, Henneman G (1977) A different approach to the radioimmunoassay of thyrotropinreleasing hormone. In: Radioimmunoassay and related procedure in medicine. National Atomic Agency, Vienna, pp 469–477

    Google Scholar 

  • Walaas I, Fonnum F (1978) The effect of parenteral glutamate treatment on the localization of neurotransmitters in the mediobasal hypothalamus. Brain Res 153:549–562

    Google Scholar 

  • Watson SJ, Akil H, Fischli W, Goldstein A, Zimmerman E, Nilaver G, van Wimersma Greidanus TB (1982) Dynorphin and vasopressin: common localization in magnocellular neurons. Science 216:85–87

    Google Scholar 

  • Wessendorf MW, Elde RP (1985) Characterization of an immunofluorescence technique for the demonstration of coexisting neurotransmitters within nerve fibers and terminals. J Histochem Cytochem 33:984–994

    Google Scholar 

  • Wiegand SJ, Price JL (1980) Cells of origin of the afferent fibers to the median eminence in the rat. J Comp Neurol 192:1–19

    Google Scholar 

  • Young III WS, Kuhar MJ (1979) A new method for receptor autoradiography: 3H-opioid receptor labeling in mounted tissue sections. Brain Res 179:255–270

    Google Scholar 

  • Zamboni L, De Martino S (1967) Buffered acid formaldehyde: a new rapid fixative for electron microscopy. J Cell Biol 148A:35

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meister, B., Ceccatelli, S., Hökfelt, T. et al. Neurotransmitters, neuropeptides and binding sites in the rat mediobasal hypothalamus: effects of monosodium glutamate (MSG) lesions. Exp Brain Res 76, 343–368 (1989). https://doi.org/10.1007/BF00247894

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00247894

Key words

Navigation