Skip to main content
Log in

Summary

Arterial blood lactate was measured at 10 s time intervals after a 3 min strenuous exercise for six athletes pedaling a bicycle ergometer in the sitting position. Recovery curves were fitted to the equation:

$$Y(t) = A_1 (1 - e^{ - \gamma _1 t} ) + A_2 (1 - e^{ - \gamma _2 t} ) + Y(0)$$

.

The evolution of arterial lactate concentrations during recovery can accurately be represented by this equation. The values of the coefficients A and γ found were used for a numerical application to an open two-compartment model: the “working muscle space” (1) and the “lactate space” (2). Intramuscular concentrations, the transfer coefficients from compartment 1 to compartment 2 and from compartment 2 to compartment 1 and the fractional turnover and basal turnover rate were calculated. Computed intramuscular lactate concentrations at the end of exercise compare favorably with those found earlier by muscular biopsic samplings. The turnover data are higher than those previously reported. This discrepancy may possibly be attributed to the method of mathematical analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A 1, A 2 :

Amplitudes of the two exponential terms fitted on the arterial lactate concentrations (Μmol·l−1)

B 1, B 2 :

Amplitudes of the two exponential terms of the intramuscular lactate concentrations (mol·l−1)

BM :

Body mass

BTR :

Basal turnover rate of the lactate pool calculated from the relationship: \(BTR = K_{s^\infty } \times C_s (\infty ) \times 0.377(\mu {\text{mol}} \cdot {\text{kg(}}BM{\text{)}}^{{\text{ - 1}}} \cdot \min ^{ - 1} )\) (Μmol·kg (BM)−1·min−1)

C m (t) :

Lactate concentration in the “working muscle space” at time t (Μmol·l−1 wet muscle)

C s (t) :

Lactate concentrations in the “lactate space” at time t (Μmol·l−1)

γ 1, γ 2 :

Velocity constants of the fitted exponential terms (min−1)

K ms :

Transfert coefficient from the “working muscle space” to the “lactate space” (min−1)

K sm :

Transfert coefficient from the “lactate space” to the “working muscle space” (min−1)

\(K_{s^\infty }\) :

Fractional turnover of lactate (min−1)

P Rm :

Lactate production in the “working muscle space” Μmol·l−1·min−1

P Rs :

Lactate production in the “lactate space” Μmol·l−1·min−1

t :

Time after the end of exercise (min)

V m :

Volume of the “working muscle space” (1)

V s :

Volume of the ‘lactate space” (1) [37.7% of the body mass]

V ms = V m /V s :
Y i :

Pre-exercise arterial lactate concentration (Μmol·l−1)

Y max :

Arterial lactate peak value during recovery (Μmol·l−1)

Y(t) :

Arterial lactate concentration at time t (Μmol·l−1)

References

  • Ahlborg, G., Hagenfeldt, L., Wahren, J.: Influence of lactate infusion on glucose and FFA metabolism in man. Scand. J. clin. Lab. Invest. 36, 193–201 (1976)

    Google Scholar 

  • Asmussen, E.: Pyruvate and lactate content of the blood during and after muscular work. Acta physiol. scand. 20, 125–132 (1950)

    Google Scholar 

  • Bergström, J.: Percutaneous needle biopsy of skeletal muscle in physiological and clinical research. Scand. J. clin. Lab. Invest. 35, 609–616 (1975)

    Google Scholar 

  • Brodan, V., Kuhn, E.: Kinetics of lactic acid during physical exercise and recovery. čas. Lék. čes. 108, 1069–1075 (1969)

    Google Scholar 

  • Coster, A. De., Denolin, H., Messin, R., Degre, S., Vandermotten, P.: Role of the metabolites in the acid-base balance during exercise. In: Biochemistry of exercise (J. R. Poortmans, ed.), pp. 15–34. Basel-New York: Karger 1969

    Google Scholar 

  • Davies, C. T. M., Knibbs, A. V., Musgrove, J.: The rate of lactic acid removal in relation to different baselines of recovery exercise. Int. Z. angew. Physiol. 28, 155–161 (1970)

    Google Scholar 

  • Depocas, F., Minaire, Y., Chatonnet, J.: Rates of formation and oxidation of lactic acid in dogs at rest and during moderate exercise. Canad. J. Physiol. Pharmacol. 47, 603–610 (1969)

    Google Scholar 

  • Diamant, B., Karlsson, J., Saltin, B.: Muscle tissue lactate after maximal exercise in man. Acta physiol. scand. 72, 383–384 (1968)

    Google Scholar 

  • Freminet, A., Bursaux, E., Poyart, L. F.: Mesure de la vitesse de renouvellement du lactate chez le rat par perfusion de 14-C-U(L) Lactate. Pflügers Arch. 334, 293–302 (1972)

    Google Scholar 

  • Freund, H.: Dosage automatique continu et cinétique d'évolution de la lactacidémie et de la pyruvicémie au cours de l'exercice musculaire chez l'homme. Thèse Pharm. Strasbourg (1970)

  • Freund, H., Lonsdorfer, A., Lonsdorfer, J.: Evolutions simultanées des lactacidémies artérielles et veineuses au cours de l'exercice musculaire chez l'homme. J. Physiol. (Paris) 65, 410–411 A (1972)

    Google Scholar 

  • Forbath, W., Kenshole, A. B., Hetenyi, G. I. R.: Turnover of lactic acid in normal and diabetic dogs calculated by two tracer methods. Amer. J. Physiol. 212, 1179–1184 (1967)

    Google Scholar 

  • Hagenfeldt, L., Wahren, J.: Human forearm muscle metabolism during exercise. VII. FFA uptake and oxidation at different work intensities. Scand. J. clin. Lab. Invest. 30, 429–436 (1972)

    Google Scholar 

  • Hermansen, L., Stensvold, I.: Production and removal of lactate during exercise in man. Acta physiol. scand. 86, 191–201 (1972)

    Google Scholar 

  • Johnson, R. E., Brouha, L.: Pulse rate, blood lactate and duration of effort in relation to ability to perform strenuous exercise. Rev. canad. Biol. 1, 171–178 (1942)

    Google Scholar 

  • Jorfeldt, L.: Metabolism of L(+)-lactate in human skeletal muscle during exercise. Acta physiol. scand., Suppl. 338 (1970)

  • Karlsson, J., Saltin, B.: Lactate, ATP and CP in working muscles during exhaustive exercise in man. J. appl. Physiol. 29, 598–602 (1970)

    Google Scholar 

  • Karlsson, J.: Pyruvate and lactate ratios in muscle tissue and blood during exercise in man. Acta physiol. scand. 81, 455–458 (1971a)

    Google Scholar 

  • Karlsson, J.: Lactate and phosphagen concentrations in working muscle of man. Acta physiol. scand., Suppl. 358 (1971b)

  • Karlsson, J.: Lactate in working muscles after prolonged exercise. Acta physiol. scand. 82, 123–130 (1971c)

    Google Scholar 

  • Karlsson, J., Diamant, B., Saltin, B.: Muscle metabolites during submaximal and maximal exercise in man. Scand. J. clin. Lab. Invest. 26, 385–394 (1971)

    Google Scholar 

  • Karlsson, J., Saltin, B.: Oxygen deficit and muscle metabolites in intermittent exercise. Acta physiol. scand. 82, 115–122 (1971)

    Google Scholar 

  • Karlsson, J., Nordesio, L. O., Jorfeldt, L., Saltin, B.: Muscle lactate, ATP and CP levels during exercise after physical training in man. J. appl. Physiol. 33, 199–203 (1972)

    Google Scholar 

  • Knuttgen, H. G.: Lactate and oxygen debt: an introduction. In: Muscle metabolism during exercise. Advanc. exp. Med. Biol., pp. 361–369. New York-London: Plenum Press 1971

    Google Scholar 

  • Knuttgen, H. G., Saltin, B.: Muscle metabolites and oxygen uptake in short-term submaximal exercise in man. J. appl. Physiol. 32, 690–694 (1972)

    Google Scholar 

  • Kreisberg, R. A., Pennington, L. F., Boshell, B. R.: Lactate turnover and gluconeogenesis in normal and obese humans. Diabetes 19, 53–63 (1970)

    Google Scholar 

  • Kreisberg, R. A., Crawford-Owen, W., Siegal, A. M.: Ethanol-induced hyperlactacidemia: inhibition of lactate utilization. J. clin. Invest. 50, 116–175 (1971)

    Google Scholar 

  • Linnarsson, D., Karlsson, J., Fagraeus, L., Saltin, B.: Muscle metabolites and oxygen deficit with exercise in hypoxia and hyperoxia. J. appl. Physiol. 36, 399–402 (1974)

    Google Scholar 

  • Margaria, R., Edwards, H. T., Dill, D. B.: The possible mechanisms of contracting and paying the oxygen debt and the role of lactic acid in muscular contraction. Amer. J. Physiol. 106, 689–715 (1933)

    Google Scholar 

  • Margaria, R., Edwards, H. T.: The removal of lactic acid from the body during recovery from muscular exercise. Amer. J. Physiol. 107, 681–686 (1934)

    Google Scholar 

  • Minaire, Y.: Origine et destinée du lactate plasmatique. J. Physiol. (Paris) 66, 229–257 (1973)

    Google Scholar 

  • Newman, E. V., Dill, D. B., Edwards, H. T., Webster, F. A.: The rate of lactic acid removal in exercise. Amer. J. Physiol. 118, 457–462 (1937)

    Google Scholar 

  • Rowell, L. B., Kraning, K. K., Evans, T. O., Kennedy, J. W., Blackmon, J. R., Kusumi, F.: Splanchnic removal of lactate and pyruvate during prolonged exercise in man. J. appl. Physiol. 21, 1773–1783 (1966)

    Google Scholar 

  • Searle, G. L., Cavalieri, R. R.: Determination of lactate kinetics in the human analysis of data from single injection versus continuous infusion methods. Proc. Soc. exp. Biol. (N.Y.) 139, 1002–1006 (1972)

    Google Scholar 

  • Wahlund, H.: Determination of the physical working capacity. Acta med. scand. 132 (Suppl. 215), 1–78 (1948)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Freund, H., Gendry, P. Lactate kinetics after short strenuous exercise in man. Europ. J. Appl. Physiol. 39, 123–135 (1978). https://doi.org/10.1007/BF00421717

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00421717

Key words

Navigation