Skip to main content
Log in

Thermal investigations of a honey bee colony: thermoregulation of the hive during summer and winter and heat production of members of different bee castes

  • Published:
Journal of Comparative Physiology B Aims and scope Submit manuscript

Summary

The temperature at the centre, the periphery and the entrance of a honey bee colony (Apis mellifera carnica) was continuously determined during the summer season and the broodless time in winter. During the summer season the temperature in the brood nest averages 35.5°C with brief excursions up to 37.0°C and down to 33.8°C. Increasing environmental temperatures resulted in linear increases in the temperature of the hive entrance, its periphery and its centre. The temperature in the centre of an overwintering cluster is maintained at an average value of 21.3°C (min 12.0°C, max 33.5°C). With rising ambient temperatures the central temperature of a winter cluster drops whereas the peripheral temperature increases slightly. With decreasing external temperatures the peripheral temperature is lowered by a small amount while the cluster's centre temperature is raised. Linear relationships are observed between the central and the ambient temperature and between the central temperature and the temperature difference of the peripheral and the ambient temperatures. The slopes point to two minimum threshold values for the central (15°C) and the peripheral temperature (5°C) which should not be transgressed in an overwintering cluster. Microcalorimetric determinations of the heat production were performed on the three castes of the honey bee: workers, drones and queens of different ages. Among these groups single adult workers showed the highest heat production rates (209 mW·g−1) with only neglectible fluctuations in the heat production rate. Juvenile workers exhibited a mean heat production rate of 142 mW·g−1. The rate of heat production of adult workers is strongly dependent upon the number of bees together in a group. With more than 10 individuals weight-specific heat dissipation remains constant with increasing group sizes at a level approximately 1/17 that of an isolated bee. Differences are seen between the rates of virgin (117 mW·g−1) and laying (102 mW·g−1) queens. Laying queens showed less thermal fluctuations than virgin queens. High fluctuations in heat production rates are observed for drones. In both groups (fertile, juvenile) phases of high and extremely low activity succeed one another. The heat production of juvenile drones was 68 mW·g−1, that of fertile drones 184 mW·g−1 due to stronger locomotory activities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allen MD (1959) Respiration rates of worker honeybees of different ages and at different temperatures. J Exp Biol 36:92–101

    Google Scholar 

  • Bachem I, Lamprecht I, Shaarschmidt B (1980) Energetical investigations on the ecologic system: Ant hill. In: Hemminger W, Wiedemann HG (eds) Thermal analysis. Birkhäuser Basel: 571–575

    Google Scholar 

  • Bachem I, Lamprecht I (1983) The hill of the red wood antsFormica polyctena as a model of an ecological system. Zurnal Obscej Biologii 44:114–123

    Google Scholar 

  • Cahill K, Lustick S (1976) Oxygen consumption and thermoregulation inApis mellifera. Comp Biochem Physiol 55A:355

    Google Scholar 

  • Calvet E, Prat H (1956) Microcalorimetrie—applications physico-chimiques et biologiques. Masson, Paris

    Google Scholar 

  • Dontsova GV, Zotin AI (1982) Relationship between maximal metabolism, body weight and standard metabolism of animals. In: Lamprecht I, Zotin AI (eds) Thermodynamics and kinetics of biological processes. De Gruyter, Berlin, pp 369–385

    Google Scholar 

  • Free JB, Simpson J (1963) The respiratory metabolism of honey-bee colonies at low temperatures. Ent Exp Appl 6:234–238

    Google Scholar 

  • Free JB, Spencer-Booth Y (1958) Observations on the temperature regulation and food consumption of honeybees (Apis mellifera). J Exp Biol 35:930–937

    Google Scholar 

  • Free JB, Spencer-Booth Y (1959) Temperature regulation of honeybees. Bee World 40:173–177

    Google Scholar 

  • Free JB, Spencer-Booth Y (1960) Chill-coma and cold death temperatures ofApis mellifera. Ent Exp Appl 3:222–230

    Google Scholar 

  • Harrison JM (1987) Roles of individual honeybee workers and drones in colonial thermogenesis. J Exp Biol 129:53–61

    Google Scholar 

  • Heinrich B (1980) Mechanism of body-temperature regulation in honeybees,Apis mellifera. II. Regulation of thoraric temperature at high air temperatures. J Exp Biol 85:73–87

    Google Scholar 

  • Heinrich B (1981) Energetics of honeybee swarm thermoregulation. Science 212:565–566

    Google Scholar 

  • Hemminger W, Höhne G (1984) Calorimetry—fundamentals and practice. Verlag Chemie, Weinheim

    Google Scholar 

  • Heran H, Crailsheim K (1988) Energy requirements of bees (Apis mellifera carnica Pollm.) in free flight, with and without additional load. In: Energy transformations in cells and animals, 10th Conf Europ Comp Physiol and Biochem Innsbruck: 77

  • Herman D, Lemasson M, Semaille R, Van Impe G (1982) Mesure de la consommation d'oxygene de l'abeille mellifere (Apis mellifica L.) par polarographie. Z Ang Ent 93:284–291

    Google Scholar 

  • Hocking B (1953) The intrinsic range and speed of flight of insects. Trans Roy Ent Soc Lond 104:218–234

    Google Scholar 

  • Kleiber M (1961) The fire of life. An introduction to animal energetics. Wiley, New York

    Google Scholar 

  • Kronenberg F (1979) Colonial thermoregulation in honey bees. Doctoral thesis, Stanford University, Stanford CA

    Google Scholar 

  • Kronenberg F, Heller HC (1982) Colonial thermoregulation in honey bees (Apis mellifera). J Comp Physiol 148: 65–76

    Google Scholar 

  • Lamprecht I (1983) Application of calorimetry to different biological fields and comparison with other methods. Boll Soc Natur Napoli 92:515–542

    Google Scholar 

  • Lindauer M (1951) Die Temperaturregulierung der Bienen bei Stocküberhitzung. Naturwissenschaften 38:308–309

    Google Scholar 

  • Lindauer M (1954) Temperaturregulierung und Wasserhaushalt im Bienenstaat. Z Vergl Physiol 36:391–432

    Google Scholar 

  • Lorenz RJ (1984) Grundbegriffe der Biometrie. Fischer, Stuttgart New York

    Google Scholar 

  • McNeil DR (1977) Interactive data analysis. A practical primer. Wiley, New York, p 186

    Google Scholar 

  • Moffett JO, Lawson FA (1975) Effect ofNosema-infection on O2 consumption by honey bees. J Econ Entom 68:627–629

    Google Scholar 

  • Nagy KA, Stallone JN (1976) Temperature maintenance and CO2 concentration in a swarm cluster of honey bees,Apis mellifera. Comp Biochem Physiol 55A:169–171

    Google Scholar 

  • Ritter W (1982) Experimenteller Beitrag zur Thermoregulation des Bienenvolkes (Apis mellifera L.). Apidologie 13:169–195

    Google Scholar 

  • Roth M (1964) Adaptation de la thermogenese a la temperature ambiante et effet d'economie thermique du groupe chez l'Abeille (Apis mellifica L.). CR Acad Sci Paris 258:5534–5537

    Google Scholar 

  • Roth M (1965) La production de chaleur chezApis mellifera L. Ann Abeille 8(1):5–77

    Google Scholar 

  • Scholze E, Pichler H, Heran H (1964) Zur Entfernungsschätzung der Bienen nach dem Kraftaufwand. Naturwissenschaften 51:69–70

    Google Scholar 

  • Simpson J (1961) Nest climate regulation in honey bee colonies. Science 133:1327–1333

    Google Scholar 

  • Southwick EE (1982) Metabolic energy of intact honey bee colonies. Comp Biochem Physiol 71A:277–281

    Google Scholar 

  • Southwick EE, Mugaas J (1971) A hypothetical homeotherm: The honeybee hive. Comp Biochem Physiol 40A:935–944

    Google Scholar 

  • Stussi TH (1972) L'heterothermie de l'abeille. Arch Sci Physiol 26:131–159

    Google Scholar 

  • Wohlgemuth R (1957) Die Temperaturregulation des Bienenvolkes unter regeltheoretischen Gesichtspunkten. Z Vergl Physiol 40:119–161

    Google Scholar 

  • Worswick PVW (1987) Comparative study of colony thermoregulation in the African honeybee,Apis mellifera adansonii Latreille and the Cape honeybee,Apis mellifera capensis Escholtz. Comp Biochem Physiol 86A:95–102

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fahrenholz, L., Lamprecht, I. & Schricker, B. Thermal investigations of a honey bee colony: thermoregulation of the hive during summer and winter and heat production of members of different bee castes. J Comp Physiol B 159, 551–560 (1989). https://doi.org/10.1007/BF00694379

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00694379

Key words

Navigation