Skip to main content
Log in

Crop residue effects on surface radiation and energy balance — review

  • Published:
Theoretical and Applied Climatology Aims and scope Submit manuscript

Summary

Crop residues alter the surface properties of soils. Both shortwave albedo and longwave emissivity are affected. These are linked to an effect of residue on surface evaporation and water content. Water content influences soil physical properties and surface energy partitioning. In summary, crop residue acts to soil as clothing acts to skin. Compared to bare soil, crop residues can reduce extremes of heat and mass fluxes at the soil surface. Managing crop residues can result in more favorable agronomic soil conditions. This paper reviews research results of the quantity, quality, architecture, and surface distribution of crop residues on soil surface radiation and energy balances, soil water content, and soil temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aase, J. K., Siddoway, F. H., 1980: Stubble height effects on seasonal microclimate, water balance, and plant development of notill winter wheat.Agric. Meteor. 21, 1–20.

    Google Scholar 

  • Abrecht, D. G., Bristow, K. L., 1990: Maize seedling response to the soil environment at varying distances from a mulched soil-bare soil boundary.Soil Tillage Res. 15, 205–216.

    Google Scholar 

  • Allmaras, R. R., Nelson, W. W., 1971: Corn (Zea mays L.) root configuration as influenced by some row-interrow variants of tillage and straw mulch management.Soil Sci. Soc. Amer. Proc. 35, 974–980.

    Google Scholar 

  • Allmaras, R. R., Nelson, W. W., 1973: Corn root-configuration response to soil temperature and matric suction.Agron. J. 65, 725–730.

    Google Scholar 

  • Black, A. L., 1970: Soil and water temperature influences on dryland winter wheat.Agron. J. 62, 797–801.

    Google Scholar 

  • Bond, J. J., Willis, W. O., 1969: Soil water evaporation: Surface residue rate and placement effects.Soil Sci. Soc. Amer. Proc. 33, 445–448.

    Google Scholar 

  • Borst, H. L., Mederski, H. J., 1957: Surface mulches and mulch tillage for corn production.Ohio Agric. Exp. Stn. Res. Bull. 796, 1–19.

    Google Scholar 

  • Bristow, K. L., 1988: The role of mulch and its architecture in modifying soil temperature.Aust. J. Soil Res. 26, 269–280.

    Google Scholar 

  • Bristow, K. L., Abrecht, D. G., 1989: The physical environment of two semi-arid tropical soils with partial surface mulch cover.Aust. J. Soil Res. 27, 577–587.

    Google Scholar 

  • Bristow, K. L., Campbell, G. S., Papendick, R. I., Elliott, L., 1986: Simulation of heat and moisture transfer through a surface residue-soil system.Agric. For. Meteorol. 36, 193–214.

    Google Scholar 

  • Bristow, K. L., Horton, R., 1995: Modelling the impact of partial surface mulch on soil heat and water flow.J. Theor. Appl. Climatol. 54, 85–98.

    Google Scholar 

  • Bristow, K. L., Kluitenberg, G. J., Horton, R., 1994: Measurement of soil thermal properties with a dual-probe heat pulse technique.Soil Sci. Soc. Amer. J. 58, 1288–1294.

    Google Scholar 

  • Bussiere, F., Cellier, P., 1994: Modification of the soil temperature and water content regimes by a crop residue mulch: experiment and modelling.Agric. Forest. Meteor. 68, 1–28.

    Google Scholar 

  • Campbell, G. S., 1977:An Introduction to Environmental Physics, Chap. 5. New York: Springer.

    Google Scholar 

  • Campbell, G. S., 1985:Soil Physics with BASIC-Transport Models for Soil-plant Systems. New York: Elsevier, 150 pp.

    Google Scholar 

  • Chung, S. O., Horton, R., 1987: Soil heat and water flow with a partial surface mulch.Water Resources Res. 23, 2175–2186.

    Google Scholar 

  • De Vries, D. A., 1963: Thermal properties of soils. In: van Wijk, W. R., (ed.)Physics of Plant Environment. Amsterdam: North-Holland, pp. 210–235.

    Google Scholar 

  • Englehorn, C. L., 1946:North Dakota Agric. Exp. Stn. Bull. 341, 1–32.

    Google Scholar 

  • Enz, J. W., Brun, L. J., Larsen, J. K., 1988: Evaporation and energy balance for bare and stubble covered soil.Agric. Forest Meteor. 43, 59–70.

    Google Scholar 

  • Gupta, S. C., Larson, W. E., Linden, D. R., 1983: Tillage and surface residue effects on upper boundary temperatures.Soil Sci. Soc. Amer. J. 47, 1212–1218.

    Google Scholar 

  • Gupta, S. C., Radke, J. K., Larson, W. E., 1981: Predicting temperature of bare and residue covered soils with and without a corn crop.Soil Sci. Soc. Amer. J. 45, 405–412.

    Google Scholar 

  • Ham, J. M., Kluitenberg, G. J., 1992: Positional variation in the soil energy balance beneath a row-crop canopy.Agric. Forest Meteor., (in review).

  • Hares, M. A., Novak, M. D., 1992a: Simulation of surface energy balance and soil temprature under strip tillage: I. Model description.Soil Sci. Soc. Amer. J. 56, 22–29.

    Google Scholar 

  • Hares, M. A., Novak, M. D., 1992b: Simulation of surface energy balance and soil temperature under strip tillage. II. Field test.Soil Sci. Sco. Amer. J. 56, 29–36.

    Google Scholar 

  • Hillel, D. I., van Bavel, C. H. M., Talpaz, H., 1975: Dynamic simulation of water storage in fallow soil as affected by mulch of hydrophobic aggregates.Soil Sci. Soc. Amer. Proc. 39, 826–833.

    Google Scholar 

  • Horton, R., 1989: Canopy shading effects on soil heat and water flow.Soil Sci. Soc. Amer. J. 53, 669–679.

    Google Scholar 

  • Horton, R., Aguirre-Luna, O., Wierenga, P. J., 1984: Observed and predicted two-dimensional soil temperature distributions under a row crop.Soil Sci. Soc. Amer. J. 48, 1147–1152.

    Google Scholar 

  • Horton, R., Chung, S. O., 1991: Soil heat flow. In: Ritchie, J. T., Hanks, R. J., (eds.)Modeling Plant and Soil Systems, chapt. 17. Agron. Mono. No. 31, Am. Soc. Agron., Madison, WI, 545 pp.

    Google Scholar 

  • Horton, R., Kluitenberg, G. J., Bristow, K. L., 1994: Surface crop residue effects on the soil surface energy balance. In: Unger, P. W. (ed.)Managing Agricultural Residues. CRC Press Inc., pp. 143–162.

  • Jacks, G. W., Brind, W. D., Smith, R., 1955: Mulching,Commonwealth Bur. Soil Sci. (England) Tech. Comm. 49, Commonwealth Agric. Bur., Farnham Royal, Bucks, England.

    Google Scholar 

  • Jackson, R. D., Taylor, S. A., 1986: Thermal conductivity and diffusivity. In: Klute, A. (ed.)Methods of Soil Analysis, Part 1, Physical and Mineralogical Methods, 2nd edn. Agron. Mono. No. 9, Am. Soc. Agron., Madison, WI, 945 pp.

    Google Scholar 

  • Kluitenberg, G. J., Horton, R., 1990: Analytical solution for two-dimensional heat conduction beneath a partial surface mulch.Soil Sci. Soc. Amer. J. 54, 1197–1206.

    Google Scholar 

  • Lal, R., 1978: Influence of within and between-row mulching on soil temperature, soil moisture, root development, and yield of maize (Zea mays L.) in a tropical soil.Field Crops Res. 1, 127–139.

    Google Scholar 

  • Larson, W. E., 1964: Soil parameters for evaluating tillage needs and operations.Soil Sci. Soc. Amer. Proc. 28, 118–122.

    Google Scholar 

  • Lindwall, C. W., Erbach, D. C., 1984: Residue cover, soil temperature regime, and corn growth, Paper 83–1024.Amer. Soc. Agric. Eng., St. Joseph, MI.

  • Lemon, E. R., 1956: Potentialities for decreasing soil moisture evaporation loss.Soil Sci. Soc. Amer. Proc. 20, 120–125.

    Google Scholar 

  • McCalla, T. M., Army, T. J., 1961: Stubble mulch farming.Adv. Agron. 13, 125–196.

    Google Scholar 

  • McCalla, T. M., Duley, F. L., 1946: Effect of crop residues on soil temperature.J. Amer. Soc. Agron. 38, 75–89.

    Google Scholar 

  • Novak, M. D., 1993: Analytical solution for two-dimensional soil heat flow with radiation surface boundary conditions.Soil Sci. Soc. Amer. J. 57, 30–39.

    Google Scholar 

  • Novak, M. D., Chen, W., Orchansky, A. L., Ketler, R., 1994: Micro-scale advection to a circular bare wet opening in a straw mulch. Proc. 21st Conf. on Agric. and For. Meteorol., San Diego, CA., pp. 52–55. Amer. Meteorol. Soc., Boston, MA.

    Google Scholar 

  • Rao, K. S., Wyngaard, J. C., Cote, O. R., 1974: Local advection of momentum, heat, and moisture in micrometeorology.Bound.-Layer Meteor. 7, 331–348.

    Google Scholar 

  • Raupach, M. R., 1989: Stand overstorey processes.Phil. Trans. Roy. Soc. B,324, 175–190.

    Google Scholar 

  • Rider, N. E., Philip, J. R., Bradley, E. F., 1963: The horizontal transport of heat and moisture — a micrometeorological study.Quart. J. Roy. Meteor. Soc. 89, 507–531.

    Google Scholar 

  • Rosenberg, N. J., Blad, B. L., Verma, A. B. S., 1983:Microclimate the Biological Environment, 2nd edn., chap. 1. New York: John Wiley and Sons.

    Google Scholar 

  • Ross, P. J., Williams, J., McCown, R. L., 1985: Soil temperature and the energy balance of vegetative mulch in the semi-arid tropics. II. Dynamic analysis of the total energy balance.Aust. J. Soil Res. 23, 515–532.

    Google Scholar 

  • Sharratt, B. S., Campbell, G. S., 1994: Radiation balance of a soil-straw surface modified by straw color.Agron. J. 86, 200–203.

    Google Scholar 

  • Shen, Y., Tanner, C. B., 1990: Radiative and conductive transport of heat through flail-chopped corn residue.Soil Sci. Soc. Amer. J. 54, 653–658.

    Google Scholar 

  • Steiner, J., 1994: Crop residue effects on water conservation. In: P. W. Unger (ed.)Managing Agricultural Residues. New York: CRC Press, pp. 41–76.

    Google Scholar 

  • Sui, H. J., Zeng, D. C., Chen, F. Z., 1992: A numerical model for simulating the temperature and moisture regimes of soil under various mulches.Agric. Forest Meteor. 61, 281–299.

    Google Scholar 

  • Tanner, C. B., Shen, Y., 1990: Solar-radiation transmittance of flail-chopped corn residue layers.Soil Sci. Soc. Amer. J. 54, 650–652.

    Google Scholar 

  • Unger, P. W., 1978: Straw mulch effects on soil temperatures and sorghum germination and growth.Agron. J. 70, 858–864.

    Google Scholar 

  • Unger, P. W., 1988: Residue management effects on soil temperatures.Soil Sci. Soc. Amer. J. 52, 1777–1782.

    Google Scholar 

  • Unger, P. W., Stewart, B. A., 1976: Land preparation and seedling establishment practices in multiple cropping systems. In: Papendick, R. I., Sanchez, P. A., Triplett, G. B. (eds.)Multiple Cropping, Spec. Pub. No. 27, Am. Soc. Agron., Madison, WI, pp. 255–274.

    Google Scholar 

  • Van Bavel, C. H. M., Hillel, D. I., 1976: Calculating potential and actual evaporation from a bare soil surface by simulation of concurrent flow of water and heat.Agric. Meteor. 17, 453–476.

    Google Scholar 

  • Verma, A. B. S., Kohnke, H., 1951: Effects of organic mulches on soil conditions and soybean yields.Soil Science 72, 149–156.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

With 6 Figures

Rights and permissions

Reprints and permissions

About this article

Cite this article

Horton, R., Bristow, K.L., Kluitenberg, G.J. et al. Crop residue effects on surface radiation and energy balance — review. Theor Appl Climatol 54, 27–37 (1996). https://doi.org/10.1007/BF00863556

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00863556

Keywords

Navigation