Skip to main content
Log in

In vivo labeling of myelin lipids and proteolipid protein with [3H]myristate, [14C]linoleate, and [14C]linolenate

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

To investigate the incorporation of essential fatty acids into myelin components, 24-day-old rabbits were injected intracerebrally with [14C]linoleate, [14C]linolenate, or [3H]Myristate for comparison. Animals were killed 22 hr later and myelin was isolated. [3H]myristate labeled all myelin lipids including monogalactosyl diglyceride, with the exception of sulfatides. With14C-essential fatty acids, only glycerophospholipids were efficiently labeled and their specific activities were in the following decreasing orders: PC>PI>PE>PS with [14C]linoleate, and PE>PC>PI=PS with [14C]linolenate. Among myelin proteins, PLP and DM-20 were labeled with all 3 precursors. PLP was purified from myelin labeled with14C-essential fatty acids. The label was then cleaved from the protein by alkaline methanolysis and was identified as a dienoic ([14C]linoleate) or a tetraenoic ([14C]linolenate) fatty acid. MBP was not labeled with [3H]myristate, but was slightly labeled with both14C-essential fatty acids. The signification of the latter result is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

FA:

fatty acid(s)

HPTLC:

high-performance thin-layer chromatography

MBP:

myelin basic protein

PLP:

proteolipid protein

PC:

phosphatidylcholine

PE:

phosphatidylethanolamine and ethanolamine plasmalogens

PI:

phosphatidylinositol

PS:

phosphatidylserine

SDS:

sodium dodecylsulfate

References

  1. Cohen, S. R., and Bernsohn, J. 1978. The in vivo incorporation of linolenic acid into neuronal and glial cells and myelin. J. Neurochem. 30:661–669.

    PubMed  Google Scholar 

  2. Horrocks, L. A. 1985. Metabolism and function of fatty acids in brain. Pages 173–199,in Eichberg, J. (ed.), Phospholipids in Nervous Tissue, Wiley, New York.

    Google Scholar 

  3. Dhopeshwarkar, G. A., and Subramanian, C. 1976. Intracranial conversion of linoleic acid to arachidonic acid: evidence for lack of Δ8 desaturase in the brain. J. Neurochem. 26:1175–1179.

    PubMed  Google Scholar 

  4. Dhopeshwarkar, G. A., and Subramanian, C. 1976. Biosynthesis of polyunsaturated fatty acids in the developing brain: I. Metabolic transformations of intracranially administered 1-14C linolenic acid. Lipids 11:67–71.

    PubMed  Google Scholar 

  5. Yau, T. M. and Sun, G. Y. 1974. The metabolism of [1-14C]arachidonic acid in the neutral glycerides and phosphoglycerides of mouse brain. J. Neurochem. 23:99–104.

    PubMed  Google Scholar 

  6. Lees, M. B., and Brostoff, S. W. 1984. Proteins of myelin. Pages 197–224,in Morell, P. (ed.), Myelin, Plenum Press, New York.

    Google Scholar 

  7. Stoffel, W., Hillen, H., Schröder, W., and Deutzmann, R. 1983. The primary structure of bovine brain myelin lipophilin (proteolipid apoprotein). Hoppe-Seyler's Z. Physiol. Chem. 364:1455–1466.

    PubMed  Google Scholar 

  8. Bizzozero, O. A., Dominguez, F., Pasquini, J. M., and Soto, E. F. 1985. Deacylation of myelin proteolipid protein in organic solvents. J. Neurosci. Res. 14:197–205.

    PubMed  Google Scholar 

  9. Norton, W. T., and Poduslo, S. E. 1973. Myelination in rat brain: method of myelin isolation. J. Neurochem. 21:749–757.

    PubMed  Google Scholar 

  10. Bürgisser, P., Matthieu, J. M., Jeserich, G., and Waehneldt, T. V. 1986. Myelin lipids: a phylogenetic study. Neurochem. Res. 11:1261–1272.

    PubMed  Google Scholar 

  11. Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685.

    PubMed  Google Scholar 

  12. Pulleyblank, D. E., and Booth, G. M. 1981. Improved methods for the fluorographic detection of weak β-emitting radioisotopes in agarose and acrylamide gel electrophoresis media. J. Biomed. Biophys. Methods 4:339–346.

    Google Scholar 

  13. Abe, T., and Norton, W. T. 1974. The characterization of sphingolipids from neurons and astroglia of immature rat brain. J. Neurochem. 23:1025–1036.

    PubMed  Google Scholar 

  14. Bizzozero, O., Besio-Moreno, M., Pasquini, J. M., Soto, E. F., and Gómez, C. J. 1982. Rapid purification of proteolipids from rat brain subcellular fractioins by chromatography on a lipophilic dextran gel. J. Chromatogr. 227:33–44.

    PubMed  Google Scholar 

  15. Yoshimura, T., Agrawal, D., and Agrawal, H. C. 1987. Cell-free acylation of rat brain myelin proteolipid protein and DM-20. Biochem. J. 246:611–617.

    PubMed  Google Scholar 

  16. Kates, M. 1972. Techniques of lipidology. Pages 558–565,in Work, T. S. and Work, E. (eds.), Laboratory Techniques in Biochemistry and Molecular Biology, vol. 3, North-Holland Publ. Comp., Amsterdam.

    Google Scholar 

  17. Morrison, W. R., and Smith, L. M. 1964. Preparation of fatty acid methyl esters and dimethylacetals from lipids with boron fluoride-methanol. J. Lipid Res. 5:600–608.

    Google Scholar 

  18. Morris, L. J. 1966. Separations from lipids by silver ion chromatography. J. Lipid Res. 7:717–732.

    PubMed  Google Scholar 

  19. Agrawal, H. C., Randle, C. L., and Agrawal, D. 1982. In vivo acylation of rat brain myelin proteolipid protein. J. Biol. Chem. 257:4588–4592.

    PubMed  Google Scholar 

  20. O'Brien, J. S., and Sampson, E. L. 1965. Fatty acid and fatty aldehyde composition of the major brain lipids in normal human gray matter, white matter, and myelin. J. Lipid Res. 6:545–551.

    PubMed  Google Scholar 

  21. Benjamins, J. A., and Iwata, R. 1979. Kinetics of entry of galactolipids and phospholipids into myelin. J. Neurochem. 32:921–926.

    PubMed  Google Scholar 

  22. Townsend, L. E., Benjamins, J. A., and Skoff, R. P. 1984. Effects of monensin and colchicine on myelin galactolipids. J. Neurochem. 43:139–145.

    PubMed  Google Scholar 

  23. Pieringer, R. A., Deshmukh, D. S., and Flynn, T. J. 1973. The association of the galactosyl diglycerides of nerve tissue with myelination. Progr. Brain Res. 40:397–405.

    Google Scholar 

  24. Rumsby, M. G. 1967. Preparation and characterization of a glycerogalactolipid fraction from sheep brain. J. Neurochem. 14:733–741.

    PubMed  Google Scholar 

  25. Steim, J. M. 1967. Monogalactosyl diglyceride: a new neurolipid. Biochim. Biophys. Acta 144:118–126.

    PubMed  Google Scholar 

  26. Cuzner, M. L., Davison, A. N., and Gregson, N. A. 1965. The chemical composition of vertebrate myelin and microsomes. J. Neurochem. 12:469–481.

    PubMed  Google Scholar 

  27. Sun, G. Y., and Yau, T. M. 1976. Changes in acyl group composition of diacyl-glycerophosphorylethanolamine, alkenylacyl-glycerophosphorylethanolamine and diacyl-glycerophosphorylcholine in myelin and microsomal fractions of mouse brain during development. J. Neurochem. 26:291–295.

    PubMed  Google Scholar 

  28. Sun, G. Y. 1972. Effectsof a fatty acid deficiency on lipids whole brain, microsomes, and myelin in the rat. J. Lipid Res. 13:56–62.

    PubMed  Google Scholar 

  29. Su, K. L., and Sun, G. Y. 1978. Acyl group composition of metabolically active lipids in brain: variances among subcellular fractions and during postnatal development. J. Neurochem. 31:1043–1047.

    PubMed  Google Scholar 

  30. Bizzozero, O. A., McGarry, J. F., and Lees, M. B. 1986. Acylation of rat brain myelin proteolipid protein with different fatty acids. J. Neurochem. 47:772–778.

    PubMed  Google Scholar 

  31. Kaufman, J. F., Krangel, M. S., and Strominger, J. L. 1984. Cysteines in the transmembrane region of major histocompatibility complex antigens are fatty acylated via thioester bonds. J. Biol. Chem. 259:7230–7238.

    PubMed  Google Scholar 

  32. Carnegie, P. R., and Dunkley, P. R. 1975. Basic proteins of central and peripheral nervous system myelin. Pages 95–135,in Agranoff, B. W. and Aprison, M. H. (eds.), Advances in Neurochemistry, vol. 1, Plenum Press, New York.

    Google Scholar 

  33. Yang, J. C., Chang, P. C., Fujitaki, J. M., Chiu, K. C., and Smith, R. A. 1986. Covalent linkage of phospholipid to myelin basic protein: identification of phosphatidylinositol biphosphate as the attached phospholipid. Biochemistry 25:2677–2681.

    PubMed  Google Scholar 

  34. Chang, P. C., Yang, J. C., Fujitaki, J. M., Chiu, K. C., and Smith, R. A. 1986. Covalent linkage of phospholipid to myelin basic protein: identification of serine-54 as the site of attachment. Biochemistry 25:2682–2686.

    PubMed  Google Scholar 

  35. Smith, R., Braun, P. E., Ferguson, M. A. J., Low, M. G., and Sherman, W. R. 1987. Direct measurement of inositol in bovine myelin basic protein. Biochem. J. 248:285–288.

    PubMed  Google Scholar 

  36. Aveldaño, M. I., and Bazán, N. G. 1983. Molecular species of phosphatidylcholine,-ethanolamine,-serine, and-inositol in microsomal and photoreceptor membranes of bovine retina. J. Lipid Res. 24:620–627.

    PubMed  Google Scholar 

  37. Garwood, M. M., Gilbert, W. R., and Agrawal, H. C. 1983. In vivo acylation of proteolipid protein and DM-20 in myelin and myelin subfractions of developing rat brain: immunoblot identification of acylated PLP and DM-20. Neurochem. Res. 8:649–659.

    PubMed  Google Scholar 

  38. Bizzozero, O. A., Soto, E. F., and Pasquini, J. M. 1984. Simultaneous entry of palmitic acid into proteolipid protein in different myelin subfractions of rat brain. Neurochem. Int. 6:659–664.

    Google Scholar 

  39. Bürgisser, P., Althaus, H.-H., Rohmann, A., and Neuhoff, V. 1988. Lipid synthesis by oligodendrocytes from adult pig brain maintained in long-term culture. Neurochem Int. 13:111–118.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bürgisser, P., Matthieu, JM. In vivo labeling of myelin lipids and proteolipid protein with [3H]myristate, [14C]linoleate, and [14C]linolenate. Neurochem Res 14, 91–96 (1989). https://doi.org/10.1007/BF00969764

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00969764

Key Words

Navigation