Skip to main content
Log in

Sharpening the LYM inequality

  • Published:
Combinatorica Aims and scope Submit manuscript

Abstract

The level sequence of a Sperner familyF is the sequencef(F)={f i (F)}, wheref i (F) is the number ofi element sets ofF . TheLYM inequality gives a necessary condition for an integer sequence to be the level sequence of a Sperner family on ann element set. Here we present an indexed family of inequalities that sharpen theLYM inequality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. C. Clements: A minimization problem concerning subsets of finite sets,Discrete Mathematics 4 (1973), 123–128.

    Google Scholar 

  2. D. E. Daykin, J. Godfrey, andA. J. W. Hilton: Existence theorems for Sperner families.J. Combinatorial Theory (A)17 (1974), 245–251.

    Google Scholar 

  3. C. Greene, andA. J. W. Hilton: Some results on Sperner families,J. Comb. Theory (A)26 (1979), 202–209.

    Google Scholar 

  4. G. O. H. Katona: A theorem of finite sets,Theory of graphs, Proc. Coll. Tihany, 1966, Akadémiai Kiadó, 1966, 187–207.

  5. J. B. Kruskal: The number of simplices in a complex,Mathematical Optimization Techniques, Univ. of Calif. Press, Berkeley and Los Angeles (1963), 251–278.

    Google Scholar 

  6. D. J. Kleitman, J. Sha: The number of linear extensions of subset ordering,Discrete Mathematics 63 (1978), 271–278.

    Google Scholar 

  7. D. Lubell: A short proof of Sperner's lemma,J. Combinatorial Theory 1 (1966), 299.

    Google Scholar 

  8. L. D. Meshalkin: A generalization of Sperner's theorem on the number of subsets of a finite set.Teor. Verojatnost i Primen. 8 (1963), 219–220, in Russian.

    Google Scholar 

  9. E. Sperner: Ein Satz über Untermengen einer endliche Menge,Math. Z. 27 (1928), 544–548.

    Google Scholar 

  10. K. Yamamoto: Logarithmic order of free distributive lattices.J. Math. Soc. Japan 6 (1954), 343–353.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Research supported in part by Alexander v. Humboldt-Stiftung

Research supported in part by NSF under grant DMS-86-06225 and AFOSR grant OSR-86-0078

Research supported in part by NSF grant CCR-8911388

Research supported in part by OTKA 327 0113

Rights and permissions

Reprints and permissions

About this article

Cite this article

Erdős, P.L., Frankl, P., Kleitman, D.J. et al. Sharpening the LYM inequality. Combinatorica 12, 287–293 (1992). https://doi.org/10.1007/BF01285817

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01285817

AMS subject classification code (1991)

Navigation