Skip to main content
Log in

Loperamide

Survey of studies on mechanism of its antidiarrheal activity

  • Review Article
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

In castor oil challenged rats, low doses of loperamide inhibit diarrhea and normalize intestinal propulsion. Unlike other opioids, loperamide is devoid of central opiate-like effects, including blockade of intestinal propulsion, up to the highest subtoxic oral dose. Nevertheless, the antidiarrheal action of loperamide can be considered to be μ-opiate receptor mediated, only a fewin vitro effects at rather high concentrations being not naloxone-reversible. There is little evidence that interactions with intestinal opiate receptors directly change epithelial cell function. When secretory stimuli increase mucosal tension, however, loperamide may reverse the elevated hydrostatic tissue pressure that opposes normal absorption. This antisecretory effect at the mucosal level is accompanied by motor effects when loperamide reaches the myenteric μ-opiate receptors. At therapeutic doses for the treatment of acute diarrhea, it is likely that the mucosal effect prevails.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Niemegeers CJE, Colpaert FC, Awouters FHL: Pharmacology and antidiarrheal effect of loperamide. Drug Dev Res 1:1–20, 1981

    Google Scholar 

  2. Niemegeers CJE, Lenaerts FM, Janssen PAJ: Loperamide (R 18 553), a novel type of antidiarrheal agent. Part 1:In vivo oral pharmacology and acute toxicity. Comparison with morphine, codeine, diphenoxylate and difenoxine. Arzneim-Forsch (Drug Res) 24:1633–1636, 1974

    Google Scholar 

  3. Karim SMM, Adaikan PG: The effect of loperamide on prostaglandin induced diarrhoea in rat and man. Prostaglandins 13:321–331, 1977

    Google Scholar 

  4. Shee CD, Pounder RE: Loperamide, diphenoxylate, and codeine phosphate in chronic diarrhoea. Br Med J 1:524, 1980

    Google Scholar 

  5. Kromer W: Endogenous and exogenous opioids in the control of gastrointestinal motility and secretion. Pharmacol Rev 40:121–162, 1988

    Google Scholar 

  6. Wüster M, Herz A: Opiate agonist action of antidiarrheal agentsin vitro andin vivo—findings in support for selective action. Naunyn-Schmiedeberg's Arch Pharmacol 301:187–194, 1978

    Google Scholar 

  7. Mackerer CR, Clay GA, East PF: Review of the involvement of opiate receptors in producing the central and peripheral effects caused by two new antidiarrheal drugs, loperamide and SC-27166. J Am Coll Toxicol 3:81–91, 1984

    Google Scholar 

  8. Leysen J, Laduron P: Aspecific binding, an important factor in drug action? J Pharmacol (Paris) 8:565–566, 1977

    Google Scholar 

  9. Niemegeers CJE, McGuire JL, Heykants JJP, Janssen PAJ: Dissociation between opiate-like and antidiarrheal activities of antidiarrheal drugs. J Pharmacol Exp Ther 210:327–333, 1979

    Google Scholar 

  10. Heykants J, Michiels M, Knaeps A, Brugmans J: Loperamide (R 18 553), a novel type of antidiarrheal agent. Part 5: The pharmacokinetics of loperamide in rats and man. Arzneim-Forsch (Drug Res) 24:1649–1653, 1974

    Google Scholar 

  11. Van Nueten JM, Helsen L, Michiels M, Heykants JJP: Distribution of loperamide in the intestinal wall. Biochem Pharmacol 28:1433–1434, 1979

    Google Scholar 

  12. Dashwood MR, Sykes RM, Thomson CS: Autoradiographic demonstration of [3H]loperamide binding to opioid receptors in rat and human small intestine. International Narcotics Research Conference (INRC) 89:165–169, 1990

    Google Scholar 

  13. Van Nueten JM, Fontaine J:In vitro pharmacology: Study of the peristaltic reflex and other experiments on isolated tissues.In Synthetic Antidiarrheal Drugs. W Van Bever and H Lal (eds). Marcel Dekker, New York, 1976, pp 114–132

    Google Scholar 

  14. Hubel KA: Intestinal nerves and ion transport: stimuli, reflexes, and responses. Am J Physiol 248:G261-G271, 1985

    Google Scholar 

  15. Caren JF, Meyer JH, Grossman MI: Canine intestinal secretion during and after rapid distention of the small bowel. Am J Physiol 227:183–188, 1974

    Google Scholar 

  16. Cooke HJ, Shonnard K, Wood JD: Effects of neuronal stimulation on mucosal transport in guinea pig ileum. Am J Physiol 245:G290-G296, 1983

    Google Scholar 

  17. See NA, Greenwood B, Bass P: Submucosal plexus alone integrates motor activity and epithelial transport in rat jejunum. Am J Physiol 259:G593-G598, 1990

    Google Scholar 

  18. Megens AAHP, Canters LLJ, Awouters FHL, Niemegeers CJE: Normalization of small intestinal propulsion with loperamide-like antidiarrheals in rats. Eur J Pharmacol 17:357–364, 1990

    Google Scholar 

  19. Megens AAHP, Canters LLJ, Awouters FHL, Niemegeers CJE: Isin vivo dissociation between the antipropulsive and antidiarrheal properties of opioids in rats related to gut selectivity? Arch Int Pharmacodyn Ther 298:220–229, 1989

    Google Scholar 

  20. Théodorou V, Fioramonti J, Hachet T, Buéno L: Absorptive and motor components of the antidiarrheal action of loperamide: Anin vivo study in pigs. Gut 32:1355–1359, 1991

    Google Scholar 

  21. Van Wyk M, Sommers DK, Steyn AGW: Evaluation of gastrointestinal motility using the hydrogen breath test. Br J Clin Pharmacol 20:479–481, 1985

    Google Scholar 

  22. Corbett CL, Thomas S, Read NW, Hobson N, Bergman I, Holdsworth CD: Electrochemical detector for breath hydrogen determination: measurement of small bowel transit time in normal subjects and patients with the irritable bowel syndrome. Gut 22:836–840, 1981

    Google Scholar 

  23. O'Brien JD, Thompson DG, McIntyre A, Burnham WR, Walker E: Effect of codeine and loperamide on upper intestinal transit and absorption in normal subjects and patients with postvagotomy diarrhoea. Gut 29:312–318, 1988

    Google Scholar 

  24. Basilisco G, Bozzani A, Camboni G, Recchia M, Quatrini M, Conte D, Penagini R, Bianchi PA: Effect of loperamide and naloxone on mouth-to-caecum transit time evaluated by lactulose hydrogen breath test. Gut 26:700–703, 1985

    Google Scholar 

  25. Basilisco G, Camboni G, Bozzani A, Bianchi PA: Loperamide and oro-caecal transit delay. Br J Clin Pharmacol 22:371–372, 1986

    Google Scholar 

  26. Basilisco G, Camboni G, Bozzani A, Paravicini M, Bianchi PA: Oral naloxone antagonizes loperamide-induced delay of orocecal transit. Dig Dis Sci 32:829–832, 1987

    Google Scholar 

  27. Sninsky CA, Davis RH, Clench MH, Thomas KD, Mathias JR: Effect of lidamidine hydrochloride and loperamide on gastric emptying and transit of the small intestine. Gastroenterology 90:68–73, 1986

    Google Scholar 

  28. Kirby MG, Dukes GE, Heizer WD, Bryson JC, Powell JR: Effect of metoclopramide, bethanechol, and loperamide on gastric residence time, gastric emptying, and mouth-tocecum transit time. Pharmacotherapy 9:226–231, 1989

    Google Scholar 

  29. Bryson JC, Dukes GE, Kirby MG, Heizer WD, Powell JR: Effect of altering small bowel transit time on sustained release theophylline absorption. J Clin Pharmacol 29:733–738, 1989

    Google Scholar 

  30. Hughes S, Higgs NB, Turnberg LA: Loperamide has antisecretory activity in the human jejunumin vivo. Gut 25:931–935, 1984

    Google Scholar 

  31. Kachel G, Ruppin H, Hagel J, Barina W, Meinhardt M, Domschke W: Human intestinal motor activity and transport: Effects of a synthetic opiate. Gastroenterology 90:85–93, 1986

    Google Scholar 

  32. Press AG, Ewe K, Schmidt J, Junge H: Effect of loperamide on jejunal electrolyte and water transport, prostaglandin E2-induced secretion and intestinal transit time in man. Eur J Clin Pharmacol 41:239–243, 1991

    Google Scholar 

  33. Holgate AM, Read NW: Relationship between small bowel transit time and absorption of a solid meal. Influence of metoclopramide, magnesium sulfate, and lactulose. Dig Dis Sci 28:812–819, 1983

    Google Scholar 

  34. Bond JH, Levitt MD: Investigation of small bowel transit time in man utilizing pulmonary hydrogen (H2) measurements. J Lab Clin Med 85:546–555, 1975

    Google Scholar 

  35. Di Lorenzo C, Dooley CP, Valenzuela JE: Role of fasting gastrointestinal motility in the variability of gastrointestinal transit time assessed by hydrogen breath test. Gut 32:1127–1130, 1991

    Google Scholar 

  36. Friedman G, Korsten M: Small bowel motility patterns in humans following orally administered anti-diarrheal drugs. Gastroenterology 72:A36, 1059, 1977

    Google Scholar 

  37. Krüger H: The action of morphine on the digestive tract. Physiol Rev 17:618–645, 1937

    Google Scholar 

  38. Farack UM, Loeschke K: Inhibition of loperamide by deoxycholic acid induced intestinal secretion. Naunyn-Schmiedeberg's Arch Pharmacol 325:286–289, 1984

    Google Scholar 

  39. Ahsan MA, Ilundain A, Naftalin RJ, Sandhu BK, Smith PM: Effects of theophylline, choleragen and loperamide on rabbit ileal fluid and electrolyte transportin vitro. Br J Pharmacol 92:743–754, 1987

    Google Scholar 

  40. Coupar IM: Minireview. Opioid action on the intestine: the importance of the intestinal mucosa. Life Sci 41:917–925, 1987

    Google Scholar 

  41. Greenwood B, Davison SJ: The relationship between gastrointestinal motility and secretion. Am J Physiol 252:G1-G7, 1987

    Google Scholar 

  42. Schiller LR, Santa Ana CA, Morawski SG, Fordtran JS: Mechanism of the antidiarrheal effect of loperamide. Gastroenterology 86:1475–1480, 1984

    Google Scholar 

  43. Rolston DDK, Zinzuvadia SN, Mathan VI: Evaluation of the efficacy of oral rehydration solutions using human whole gut perfusion. Gut 31:1115–1119, 1990

    Google Scholar 

  44. Niemegeers CJE, Awouters F, Lenaerts FM, Artois KSK, Vermeire J: Antidiarrheal specificity and safety of theN-oxide of loperamide (R 58 425) in rats. Drug Div Res 8:279–286, 1986

    Google Scholar 

  45. Stewart CP, Turnberg LA: A microelectrode study of responses to secretagogues by epithelial cells on villus and crypt of rat small intestine. Am J Physiol 257:G334-G343, 1989

    Google Scholar 

  46. Sjöqvist A, Beeuwkes R: Villus and crypt electrolyte and fluid transport during intestinal secretion. Acta Physiol Scand 139:203–210, 1990

    Google Scholar 

  47. Sundqvist T, Magnusson K-E: Modelling of intestinal permeability in man to polyethyleneglycols (PEG 400 and PEG 1000). Acta Physiol Scand 125:289–296, 1986

    Google Scholar 

  48. Ewe K, Wanitschke R, Staritz M: Intestinal permeability studies in humans.In Pharmacology of Intestinal Permeation. Handbook of Experimental Pharmacology, 70/II TZ Csaky (ed). Springer-Verlag, Berlin, 1984, pp 535–571

    Google Scholar 

  49. Davis GR, Santa Ana CA, Morawski SG, Fordtran JS: Permeability characteristics of human jejunum, ileum, proximal colon and distal colon: Results of potential difference measurements and unidirectional fluxes. Gastroenterology 83:844–850, 1982

    Google Scholar 

  50. Granger DN: Intestinal microcirculation and transmucosal fluid transport. Am J Physiol 240:G343-G349, 1981

    Google Scholar 

  51. Winne D: The influence of blood flow and water net flux on the absorption of tritiated water from the jejunum of the rat. Naunyn-Schmiedeberg's Arch Pharmacol 272:417–436, 1972

    Google Scholar 

  52. Winne D: Role of blood flow in intestinal permeation.In Pharmacology of Intestinal Permeation. Handbook of Experimental Pharmacology, 70/II, TZ Csaky (ed). Springer-Verlag, Berlin, 1984, pp 301–347

    Google Scholar 

  53. Joyce NC, Haire MF, Palade GE: Morphologic and biochemical evidence for a contractile cell network within the rat intestinal mucosa. Gastroenterology 92:68–81, 1987

    Google Scholar 

  54. Keast JR: Mucosal innervation and control of water and ion transport in the intestine. Rev Physiol Biochem Pharmacol 109:1–59, 1987

    Google Scholar 

  55. Bridges RJ, Rummel W: Mechanistic basis of alterations in mucosal water and electrolyte transport. Clin Gastroenterol 15:491–506, 1986

    Google Scholar 

  56. Cooke HJ: Influence of enteric cholinergic neurons on mucosal transport in guinea pig ileum. Am J Physiol 246:G263-G267, 1984

    Google Scholar 

  57. Isaacs PET, Corbett CL, Riley AK, Hawker PC, Turnberg LA:In vitro behavior of human intestinal mucosa. The influence of acetylcholine on ion transport. J Clin Invest 58:535–542, 1976

    Google Scholar 

  58. Bornstein J, Furness J: Correlated electrophysiological and histochemical studies of submucous neurons and their contribution to understanding enteric neural circuits. J Auton Nerv Syst 25:1–13, 1988

    Google Scholar 

  59. Sjöqvist A, Beeuwkes R: Antisecretory effect of splanchnic nerve stimulation on choleratoxin-induced secretion in the cat, an effect mediated at the crypts. Acta Physiol Scand 142:359–365, 1991

    Google Scholar 

  60. Lundgren O, Svanvik J, Jivegård L: Enteric nervous system. I. Physiology and pathophysiology of the intestinal tract. Dig Dis Sci 34:264–283, 1989

    Google Scholar 

  61. Sjöqvist A: Interaction between antisecretory opioid and sympathetic mechanisms in the rat small intestine. Acta Physiol Scand 142:127–132, 1991

    Google Scholar 

  62. Read NW: Diarrhée motrice. Clin Gastroenterol 15:657–686, 1986

    Google Scholar 

  63. Swabb EA, Hynes RA, Marnane WG, McNeil JS, Decker RA, Tai Y-H, Donowitz M: Intestinal filtration secretion due to increased intraluminal pressure in rabbits. Am J Physiol 242:G65-G75, 1982a

    Google Scholar 

  64. Swabb EA, Hynes RA, Donowitz M: Elevated intraluminal pressure alters rabbit small intestinal transportin vivo. Am J Physiol 242:G58-G64, 1982

    Google Scholar 

  65. Yablonski ME, Lifson N: Mechanism of production of small intestinal secretion by elevated venous pressure. J Clin Invest 57:904–915, 1976

    Google Scholar 

  66. Lee JS: Contraction of villi and fluid transport in dog jejunal mucosain vitro. Am J Physiol 221:488–495, 1971

    Google Scholar 

  67. Lee JS: Relationship between intestinal motility, tone, water absorption and lymph flow in the rat. J Physiol 345:489–499, 1983

    Google Scholar 

  68. Berschneider HM, Martens H, Powell DW: Effect of BW 942C, an enkephalinlike pentapeptide, on sodium and chloride transport in the rabbit ileum. Gastroenterology 94:127–136, 1988

    Google Scholar 

  69. Mailman D: Effects of morphine on canine intestinal absorption and blood flow. Br J Pharmacol 68:617–624, 1980

    Google Scholar 

  70. Mailman D: Morphine-neural interactions on canine intestinal absorption and blood flow. Br J Pharmacol 81:263–270, 1984

    Google Scholar 

  71. Bianchi C, Goi A: On the antidiarrhoeal and analgesic properties of diphenoxylate, difenoxine and loperamide in mice and rats. Arzneim-Forsch (Drug Res) 27(I):1040–1043, 1977

    Google Scholar 

  72. Dajani EZ, Bianchi RG, East PF, Bloss JL, Adelstein GW, Yen CH: The pharmacology of SC-27166: A novel antidiarrheal agent. J Pharmacol Exp Ther 203:512–526, 1977

    Google Scholar 

  73. Fioramonti J, Buéno L: Effects of loperamide hydrochloride on experimental diarrhea and gastrointestinal myoelectrical activity in calves. Am J Vet Res 48:415–419, 1987

    Google Scholar 

  74. Mir GN, Alioto RL, Sperow JW, Eash JR, Krebs JB, Yelnosky J:In vivo antimotility and antidiarrheal activity of lidamidine hydrochloride (WHR-1142A), a novel antidiarrheal agent. Arzneim-Forsch (Drug Res) 28:1448–1454, 1978

    Google Scholar 

  75. Sohji Y, Kawashima K, Nakamura H, Shimizu M: Pharmacological studies of loperamide, an antidiarrheal agent. Part 1. Effects on diarrhea induced by castor oil and prostaglandin E1. Folia Pharm Jpn 74:145–154, 1978

    Google Scholar 

  76. Clay GA, Mackerer CR, Lin TK: Interaction of loperamide with [3H]naloxone binding sites in guinea pig brain and myenteric plexus. Mol Pharmacol 13:533–540, 1977

    Google Scholar 

  77. Mackerer CR, Clay GA, Dajani EZ: Loperamide binding to opiate receptor sites of brain and myenteric plexus. J Pharmacol Exp Ther 199:131–140, 1976

    Google Scholar 

  78. Mackerer CR, Brougham LR, Eas PF, Bloss JL, Dajani EZ, Clay GA: Antidiarrheal and central nervous system activities of SC-27166 (2-[3-(5-methyl-1,3,4-oxadiazol-2-yl)-3,3-diphenylpropyl]-2-azabicyclo[2.2.2]octane), a new antidiarrheal agent, resulting from binding to opiate receptor sites of brain and myenteric plexus. J Pharmacol Exp Ther 203:527–538, 1977

    Google Scholar 

  79. Stahl KD, Van Bever W, Janssen P, Simon EJ: Receptor affinity and pharmacological potency of a series of narcotic analgesicm anti-diarrheal and neuroleptic drugs. Eur J Pharmacol 46:199–205, 1977

    Google Scholar 

  80. Simon EJ, Hiller JM: The opiate receptors. Annu Rev Pharmacol Toxicol 18:371–394, 1978

    Google Scholar 

  81. Terenius L: Comparison between narcotic “receptors” in the guinea-pig ileum and the rat brain. Acta Pharmacol Toxicol 37:211–221, 1975

    Google Scholar 

  82. Wüster M, Schulz R, Herz A: Opiates compared with antidiarrheals concerning their affinity to the morphine receptor and action on the isolated guinea-pig ileum. Naunyn-Schmiedeberg's Arch Pharmacol 293(suppl):R35, 1976

    Google Scholar 

  83. Zavecz JH, Jackson TE, Limp GL, Yellin TO: Relationship between antidiarrheal activity and binding to calmodulin. Eur J Pharmacol 78:375–377, 1982

    Google Scholar 

  84. Merritt JE, Brown BL, Tomlinson S: Loperamide and calmodulin. Lancet 1:283, 1982

    Google Scholar 

  85. Stoll R, Ruppin H, Domschke W: Calmodulin-mediated effects of loperamide on chloride transport by brush border membrane vesicles from human ileum. Gastroenterology 95:69–76, 1988

    Google Scholar 

  86. Kenakin TP, Beek D: A comparison of loperamide to four calcium channel inhibitors on isolated tissues; loperamide as a calcium channel blocker. The Pharmacologist 24:193, 1982

    Google Scholar 

  87. Chang EB, Brown DR, Wang NS, Field M: Loperamide selectively inhibits peptide-induced Cl-secretion and calcium entry in gut. Gastroenterology 86:1044A, 1984

    Google Scholar 

  88. Fioramonti J, Fargeas M-J, Buéno L: Stimulation of gastrointestinal motility by loperamide in dogs. Dig Dis Sci 32:641–646, 1987

    Google Scholar 

  89. Read M, Read NW: Anal sphincter function in diarrhoea: Influence of loperamide. Clin Res Reviews 1(suppl 1):219–224, 1981

    Google Scholar 

  90. Rees WDW, Sharpe GR, Christofides ND, Bloom SR, Turnberg LA: The effects of an opiate agonist and antagonist on the human upper gastrointestinal tract. Eur J Clin Invest 13:221–225, 1983

    Google Scholar 

  91. Remington M, Malagelada J-R, Zinsmeister A, Fleming CR: Abnormalities in gastrointestinal motor activity in patients with short bowels: Effect of a synthetic opiate. Gastroenterology 85:629–636, 1983

    Google Scholar 

  92. Altaparmakov I, Wienbeck M: Local inhibition of myoelectrical activity of human colon by loperamide. Dig Dis Sci 29:232–238, 1984

    Google Scholar 

  93. Cann PA, Read NW, Holdsworth CD, Barends D: Role of loperamide and placebo in management of irritable bowel syndrome (IBS). Dig Dis Sci 29:239–247, 1984

    Google Scholar 

  94. Emblem R, Stien R, Mørkrid L: The effect of loperamide on bowel habits and anal sphincter function in patients with ileoanal anastomosis. Scand J Gastroenterol 24:1019–1024, 1989

    Google Scholar 

  95. Baker GF, Segal MB: The effect of loperamide on the ion fluxes across the isolated rabbit colon. Biochem Pharmacol 30:3371–3373, 1981

    Google Scholar 

  96. Balkovetz DF, Miyamoto Y, Tiruppathi C, Mahesh VB, Leibach FH, Ganapathy V: Inhibition of brush-border membrane Na+−H+ exchanger by loperamide. J Pharmacol Exp Ther 243:150–154, 1987

    Google Scholar 

  97. Beubler E, Lembeck F: Inhibition of stimulated fluid secretion in the rat small and large intestine by opiate agonists. Naunyn-Schmiedeberg's Arch Pharmacol 306:113–118, 1979

    Google Scholar 

  98. Beubler E, Badhri P: Comparison of the antisecretory effects of loperamide and loperamide oxide in the jejunum and the colon of ratsin vivo. J Pharm Pharmacol 42:689–692, 1990

    Google Scholar 

  99. Binder HJ, Laurenson J, Dobbins JW: Mechanism of loperamide's antidiarrheal action. Gastroenterology 80:1111, 1981

    Google Scholar 

  100. Brown DR, Treder BG: Neurohormonal regulation of ion transport in the porcine distal jejunum. Actions of neurotensin and its natural homologs. J Pharm Exp Ther 249:348–357, 1989

    Google Scholar 

  101. Chang EB, Brown DR, Wang NS, Field M: Secretagogueinduced changes in membrane calcium permeability in chicken and chinchilla ileal mucosa. Selective inhibition by loperamide. J Clin Invest 78:281–287, 1986

    Google Scholar 

  102. Diener M, Knobloch SF, Rummel W: Action of loperamide on neuronally mediated and Ca2+-or cAMP-mediated secretion in rat colon. Eur J Pharmacol 152:217–225, 1988

    Google Scholar 

  103. Duenas Laita A, Fernandez De La Gandara F, Caro-Paton Gomez A, Casas Carnicero J: Modificationes del transporte de agua, glucosa y electrolitos en el intestino de rata “in vivo” tras la inyección intraluminal de loperamida y aspirina. Rev Esp Enf Ap Digest 64:165–169, 1983

    Google Scholar 

  104. Farack UM, Kautz U, Loeschke K: Loperamide reduces the intestinal secretion but not the mucosal cAMP accumulation induced by choleratoxin. Naunyn-Schmiedeberg's Arch Pharmacol 317:178–179, 1981

    Google Scholar 

  105. Goerg KJ, Roux M, Wanitschke R, Meyer zum Büschenfelde KH: The direct and indirect inhibitory effect of loperamide on active chloride secretion in the colon induced by prostaglandin E2, prostacyclin and iloprost. Gastroenterology 88:1397, 1985

    Google Scholar 

  106. Gordon SJ, Kinsey MD, Magen JS, Joseph RE, Kowlessar OD: Effect of loperamide on bile acid induced secretion in the rat cecum. Gastroenterology 74:1040, 1978

    Google Scholar 

  107. Guandalini S, Fasano A, Rao MC, Ferola A, Migliavacca M, Marchesano G, Rubino A: Effects of loperamide on intestinal ion transport. J Pediatr Gastroenterol Nutr 3:593–601, 1984

    Google Scholar 

  108. Hardcastle J, Hardcastle PT, Read NW, Redfern JS: The action of loperamide in inhibiting prostaglandin-induced intestinal secretion in the rat. Br J Pharmacol 74:563–569, 1981

    Google Scholar 

  109. Hardcastle J, Hardcastle PT, Cookson J: Inhibitory actions of loperamide on absorptive processes in rat small intestine. Gut 27:686–694, 1986

    Google Scholar 

  110. Ilundain A, Naftalin RJ: Opiates increase chloride permeability of the serosal border of rabbit ileum. J Physiol 316:56–57, 1981

    Google Scholar 

  111. Karbach U, Dix J, Ewe K: Einfluss von Loperamid auf den intestinalen Flüssigkeitstransport.In vivo Untersuchung am Dünndarm der Ratte. Klin Wochenschr 64 (suppl V):60, 1986

    Google Scholar 

  112. Knoop FC, Abbey DM: Effect of chemical and pharmacological agents on the secretory activity induced byEscherichia coli heat-stable enterotoxin. Can J Microbiol 27:754–758, 1981

    Google Scholar 

  113. Loeschke K, Schmid T, Farack UM: Inhibition by loperamide of mucus secretion in the rat colonin vivo. Eur J Pharmacol 170:41–46, 1989

    Google Scholar 

  114. Sandhu BK, Tripp JH, Candy DCA, Harries JT: Loperamide inhibits cholera-toxin-induced small-intestinal secretion. Lancet 2:689–690, 1979

    Google Scholar 

  115. Sandhu BK, Tripp JH, Candy DCA, Harries JT: Loperamide: studies on its mechanism of action. Gut 22:658–662, 1981

    Google Scholar 

  116. Stoll R, Ruppin H, Domschke W: Effect of loperamide on chloride transport in brush border vesicles of human small intestine. Gastroenterology 88:1601, 1985

    Google Scholar 

  117. Verhaeren EHC, Dreessen MJ, Lemli JA: Influence of 1,8-dihydroxyanthraquinone and loperamide on the paracellular permeability across colonic mucosa. J Pharm Pharmacol 33:526–528, 1981

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Awouters, F., Megens, A., Verlinden, M. et al. Loperamide. Digest Dis Sci 38, 977–995 (1993). https://doi.org/10.1007/BF01295711

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01295711

Key Words

Navigation