Skip to main content
Log in

Adaptive indirect effects: the fitness of burying beetles with and without their phoretic mites

  • Papers
  • Published:
Evolutionary Ecology Aims and scope Submit manuscript

Summary

Any behavior that equally affects a group of organisms cannot be selected by the evolutionary forces operating within that group. The evolution of such behaviors requires a population structure consisting of many groups that vary in their genetic and/or species composition. In this paper we present evidence for the evolution of behaviors with shared consequences in phoretic mites that utilizeNicrophorus beetles (Silphidae) for transport. Eighteen experiments, totalling over 1500 beetle broods, demonstrate that the mites (1) have no negative effects on the beetles at normal densities, (2) occasionally have short-term beneficial effects, (3) appear to have long-term beneficial effects that require a period of time to manifest themselves, and (4) themselves have negative effects at abnormal densities. A survey of other phoretic associations indicates a similar mix of commensalism and mutualism. We conclude that most phoretic associations have evolved to eliminate their own negative effects on the carrier, and also have evolved positive effects when the ecological situation permits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barras, S. J. (1970) Antagonism betweenDendroctonus frontalis and the fungusCeratocystis minor.Annals of the Entomological Society of America 63, 1187–90.

    Google Scholar 

  • Batra, L. R. (ed.) (1979)Insect-Fungus Symbiosis: Nutrition, Mutualism, and Commensalism. John Wiley, New York.

    Google Scholar 

  • Bridges, J. R. and Moser, J. C. (1983) Role of two phoretic mites in transmission of bluestain fungusCeratocystis minor.Ecological Entomology 8, 9–12.

    Google Scholar 

  • Brown, J. H., Davidson, D. W., Munger, J. C. and Inouye, R. S. (1986) Experimental community ecology: the desert granivore system. InCommunity Ecology (J. M. Diamond and T. J. Case, eds.) pp. 41–62. Harper and Row, New York.

    Google Scholar 

  • Clausen, C. P. (1976) Phoresy among entomophagous insects.Annual Review of Entomology 21, 343–68.

    Google Scholar 

  • Costa, M. (1969) The association between Mesostigmatic mites and Coprid Beetles.Acarologia 11, 411–28.

    Google Scholar 

  • Darwin, C. (1859)The Origin of Species. (Reprint of first edition, J. W. Burrow, ed.). Penguin Books, London.

    Google Scholar 

  • Estes, J. A. and Palmisano, J. F. (1974) Sea otters: their role in structuring nearshore communites.Science 185, 1058–60.

    Google Scholar 

  • Farish, D. J. and Axtell, R. C. (1971) Phoresy redefined and examined inMarcocheles muscaedomesticae (Acarina, Macrochelidae).Acarologia 13, 16–29.

    Google Scholar 

  • Francke-Grosmann, H. (1967) Ectosymbiosis in wood-inhabiting insects. InSymbiosis, vol. 2 (S. M. Henry, ed.) pp. 142–206. Academic Press, New York.

    Google Scholar 

  • Gilbert, D. G. (1980) Dispersal of yeasts and bacteria byDrosophila in a temperate forest.Oecologia 46, 135–37.

    Google Scholar 

  • Graham, K. (1967) Fungal-insect mutualism in trees and timber.Annual Review of Entomology 12, 105–26.

    Google Scholar 

  • Haanstad, J. O. and Norris, D. M. (1985) Microbial symbiotes of the ambrosia beetleXyloterinus pollitus.Microbial Ecology 11, 267–76.

    Google Scholar 

  • Holt, R. D. (1977) Predation, apparent competition, and the structure of prey communities.Theoretical Population Biology 12, 197–229.

    PubMed  Google Scholar 

  • Howard, D. J., Bush, G. L. and Breznak, J. A. (1985) The evolutionary significance of bacteria associated withRhagoletis.Evolution 39, 405–17.

    Google Scholar 

  • Kinn, D. N. (1980) Mutualism betweenDendrolaelaps neodisetus andDendroctonus frontalis.Environmental Entomology 9, 756–8.

    Google Scholar 

  • Kinn, D. N. (1984)Protocylindrocorpus dendrophilus n. sp. (Nematoda: Cylindrocorpidae) associated with pine wood borings.Journal of Nematology 16, 131–4.

    Google Scholar 

  • Kinn, D. N. and Witcosky, J. J. (1977) The life cycle and behavior ofMacrocheles boudreauxi Krantz.Zeitschrift für angewandte Entomologie 87, 136–44.

    Google Scholar 

  • Kok, L. T. (1979) Lipids of Ambrosia fungi and the life of mutualistic beetles. InInsect-fungus Symbiosis: Nutrition, Mutualism and Commensalism (L. R. Batra, ed.) pp. 33–52. John Wiley, New York.

    Google Scholar 

  • Lawlor, L. R. (1979) Direct and indirect effects of n-species competition.Oecologia 43, 355–64.

    Google Scholar 

  • Levine, S. (1976) Competitive interactions in ecosystems.American Naturalist 110, 903–10.

    Google Scholar 

  • Levins, R. (1974) Qualitative analysis of partially specified systems.Annals of the New York Academy of Science 231, 123–38.

    Google Scholar 

  • Levins, R. (1975) Evolution in communities near equilibrium. InEcology and Evolution of Communities, (M. L. Cody and J. M. Diamond, eds.) pp. 16–50. Harvard University Press, Cambridge, Mass.

    Google Scholar 

  • Lindquist, E. E. (1964) Mites parasitizing eggs of bark beetles of the genusIps.Canadian Entomology 96, 125–6.

    Google Scholar 

  • Lubchenco, J. (1986) Relative importance of competition and predation: early colonization by seaweeds in New England. InCommunity Ecology (J. M. Diamond and T. J. Case, eds.) pp. 537–55. Harper and Row, New York.

    Google Scholar 

  • MacGuidwin, A. (1979) Biology ofContortylenchus brevicomi (Nematoda: Sphaerulariidae) and its effect on gallery construction and fertility ofDendroctonus frontalis (Coleoptera: Scolytidae). M.Sc. thesis, University of Florida.

  • Monteith, G. B. and Storey, R. I. (1981) The biology ofCephalodesmius, a genus of dung beetles which synthesizes “dung” from plant material (Coleoptera: Scarabaeidae: Scarabaeinae).Memoirs of the Queensland Mus. 20, 253–77.

    Google Scholar 

  • Moser, J. C., Cross, E. A., and Roton, L. M. (1971) Biology ofPyemotes parviscolyti (Acarina: Pyemotidae).Entomophaga 16, 367–79.

    Google Scholar 

  • Moser, J. C. and Roton, L. M. (1971) Mites associated with southern pine bark beetles in Allen Parish, Louisiana.Canadian Entomologist 103, 1175–98.

    Google Scholar 

  • Pukowski, E. (1933) Ökologische Untersuchungen anNecrophorus F.Zeitschrift für Morphologie und Oekologie 27, 518–86.

    Google Scholar 

  • Schaffer, W. M. (1981) Ecological abstraction: the consequences of reduced dimensionality in ecological models.Ecological Monographs 51, 383–401.

    Google Scholar 

  • Sokal, R. R. and Rohlf, F. J. (1981).Biometry (2nd edn). W. H. Freeman, New York.

    Google Scholar 

  • Springett, B. P. (1968) Aspects of the relationship between burying beetlesNecrophorus spp. and the mitePoecilochirus necrophori.Journal of Animal Ecology 37, 417–24.

    Google Scholar 

  • Starmer, W. T. (1982) Associations and interactions among yeasts,Drosophila and their habitats. InEcological Genetics and Evolution: the Cactus-yeast (J. S. F. Barker and W. T. Starmer, eds.) pp. 159–73. Academic Press, New York.

    Google Scholar 

  • Vandermeer, J., Hazlett, B. and Rathcke, B. (1985) Indirect facilitation and mutualism. InThe Biology of Mutualism (D. H. Boucher, ed.) pp. 326–43. Oxford University Press, Oxford.

    Google Scholar 

  • Whitney, H. S. (1982) Relationships between bark beetles and symbiotic organisms. InBark Beetles in North American Conifers (J. B. Mitton and K. B. Sturgeon, eds.) pp. 183–212. University of Texas Press, Austin, Texas.

    Google Scholar 

  • Wilson, D.S. (1976) Evolution on the level of communities.Science 192, 1358–60.

    PubMed  Google Scholar 

  • Wilson, D. S. (1980)The Natural Selection of Populations and Communities. Benjamin/Cummins, Menlo Park, California.

    Google Scholar 

  • Wilson, D. S. (1982) Genetic polymorphism for carrier preference in a phoretic mite.Annals of the Entomological Society of America 75, 293–6.

    Google Scholar 

  • Wilson, D. S. (1983a) The effect of population structure on the evolution of mutualism: a field test involving burying beetles and their phoretic mites.American Naturalist 121, 851–70.

    Google Scholar 

  • Wilson, D. S. (1983b) The group selection controversy: history and current status.Annual Review of Ecology and Systematics 14, 159–87.

    Google Scholar 

  • Wilson, D. S. (1986) Adaptive indirect effects. InCommunity Ecology (J. M. Diamond and T. J. Case, eds.) pp. 437–44. Harper and Row, New York.

    Google Scholar 

  • Wilson, D. S. and Knollenberg, W. G. (1984) Food discrimination and ovarian development in burying beetles (Coleoptera: Silphidae:Nicrophorus).Annals of the Entomological Society of America 77, 165–70.

    Google Scholar 

  • Wilson, D. S. and Fudge, J. (1984) Burying beetles: intraspecific interactions and reproductive success in the field.Ecological Entomology 9, 195–203.

    Google Scholar 

  • Wilson, D. S., Knollenberg, W. G. and Fudge, J. (1984) Species packing and temperature-dependent competition among burying beetles.Ecological Entomology 9, 205–16.

    Google Scholar 

  • Wilson, E. O. (1971)The Insect Societies. Belknap Press, Cambridge.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wilson, D.S., Knollenberg, W.G. Adaptive indirect effects: the fitness of burying beetles with and without their phoretic mites. Evol Ecol 1, 139–159 (1987). https://doi.org/10.1007/BF02067397

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02067397

Keywords

Navigation