Skip to main content
Log in

Hermite polynomials and a duality relation for matchings polynomials

  • Published:
Combinatorica Aims and scope Submit manuscript

Abstract

LetG be a graph onn vertices. Ak-matching inG is a set ofk independent edges. If 2k=n then ak-matching is called perfect. The number ofk-matchings inG isp(G, k). (We setp(G, 0)=1). The matchings polynomial ofG is

$$\alpha (G,x) = \sum\limits_{k = 0}^{[n/2]} {( - 1)^k p(G,k)x^{n - 2k} } $$

Our main result is that the number of perfect matchings in the complement ofG is equal to

$$(2\pi )^{ - 1/2} \int\limits_{ - \infty }^\infty {\alpha (G,x)} \exp ( - x^2 /2)dx.$$
((1))

LetK m be the complete graph onm vertices. Then α(K m ,x) is the Hermite polynomial He n (x) of degreen. Using (1) we show, amongst other results, that

$$\alpha (\bar G,x) = \sum\limits_{k = 0}^{[n/2]} {p(G,k)} \alpha (K_{n - 2k} ,x).$$

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Azor, J. Gillis andJ. D. Victor, Combinatorial applications of Hermite polynomials, manuscript.

  2. A. Erdélyi, W. Magnus, F. Oberhettinger andF. G. Tricomi,Higher Transcendental Functions (Bateman manuscript project), McGraw-Hill, 1953.

  3. C. D. Godsil andI. Gutman, On the theory of the matching polynomial,J. Graph Theory,5 (1981), 137–144.

    MATH  MathSciNet  Google Scholar 

  4. O. J. Heilmann andE. H. Lieb, Theory of monomer-dimer systems,Comm. Math. Physics,25 (1972), 190–232.

    Article  MATH  MathSciNet  Google Scholar 

  5. S. A. Joni andG-C. Rota, A vector space analog of permutations with restricted position,J. Combinatorial Theory, Series A,29 (1980), 59–73.

    Article  MATH  MathSciNet  Google Scholar 

  6. L. Lovász,Combinatorial Problems and Exercises, North-Holland, Amsterdam, 1979.

    MATH  Google Scholar 

  7. J. Riordan,An introduction to Combinatorial Analysis, Wiley, 1958.

  8. T. Zaslavsky, Complementary matching vectors and the uniform matching extension property,Europ. J. Comb. 2 (1981), 91–103.

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Godsil, C.D. Hermite polynomials and a duality relation for matchings polynomials. Combinatorica 1, 257–262 (1981). https://doi.org/10.1007/BF02579331

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02579331

AMS subject classification (1980)

Navigation