Skip to main content
Log in

Cadmium-induced excretion of urinary lipid metabolites, DNA damage, glutathione depletion, and hepatic lipid peroxidation in sprague-dawley rats

  • Original Articles
  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Recent studies have described lipid peroxidation to be an early and sensitive consequence of cadmium exposure, and free radical scavengers and antioxidants have been reported to attenuate cadmium-induced toxicity. These observations suggest that cadmium produces reactive oxygen species that may mediate many of the untoward effects of cadmium. Therefore, the effects of cadmium (II) chloride on reactive oxygen species production were examined following a single oral exposure (0.50 LD50) by assessing hepatic mitochondrial and microsomal lipid peroxidation, glutathione content in the liver, excretion of urinary lipid metabolites, and the incidence of hepatic nuclear DNA damage. Increases in lipid peroxidation of 4.0- and 4.2-fold occurred in hepatic mitochondria and microsomes, respectively, 48 h after the oral administration of 44 mg cadmium (II) chloride/kg, while a 65% decrease in glutathione content was observed in the liver. The urinary excretion of malondialdehyde (MDA), formaldehyde (FA), acetaldehyde (ACT), and acetone (ACON) were determined at 0–96 h after Cd administration. Between 48 and 72 h posttreatment maximal excretion of the four urinary lipid metabolites was observed with increases of 2.2- to 3.6-fold in cadmium (II) chloride-treated rats. Increases in DNA single-strand breaks of 1.7-fold were observed 48 h after administration of cadmium. These results support the hypothesis that cadmium induces production of reactive oxygen species, which may contribute to the tissue-damaging effects of this metal ion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Manca, A. C. Ricard, B. Trottier, and G. Chevalier, Studies on lipid peroxidation in rat tissues following administration of low and moderate doses of cadmium chloride,Toxicology 67, 303–323 (1991).

    Article  PubMed  CAS  Google Scholar 

  2. L. Muller, Consequences of cadmium toxicity in rat hepatocytes: Mitochondrial dysfunction and lipid peroxidation,Toxicology 40, 285–292 (1986).

    Article  PubMed  CAS  Google Scholar 

  3. M. W. Fariss, Cadmium toxicity: Unique cytoprotective properties of alpha tocopheryl succinate in hepatocytes,Toxicology 69, 63–77 (1991).

    Article  PubMed  CAS  Google Scholar 

  4. T. Hussain, G. S. Shukla, and S. F. Chandra, Effects of cadmium on superoxide dismutase and lipid peroxidation in liver and kidney of growing rats: In vivo and in vitro studies,Pharmacol. Toxicol. 60, 355–358 (1987).

    Article  PubMed  CAS  Google Scholar 

  5. T. Koizumi and Z. G. Li, Role of oxidative stress in single-dose, cadmium-induced testicular cancer,J. Toxicol. Environ. Hlth 37, 25–36 (1992).

    Article  CAS  Google Scholar 

  6. A. Hudecova and E. Ginter, The influence of ascorbic acid on lipid peroxidation in guinea pigs intoxicated with cadmium,Fd. Chem. Toxic. 30, 1011–1013 (1992).

    Article  CAS  Google Scholar 

  7. C. Casals, M. Gasset, M. C. Mendez, P. Garcia-Barreno, and A. M. Munico, Lipid alterations in liver and kidney induced by normobaric hyperoxia: Correlations with changes in microsomal membrane fluidity.Biochem. Med. Met. Biol. 37, 269–281 (1987).

    Article  CAS  Google Scholar 

  8. O. H. Lowry, N. J. Rosebrough, W. L. Farr, and R. J. Randall, Protein measurement with the folin phenol reagent,J. Biol. Chem. 193, 265–275 (1951).

    PubMed  CAS  Google Scholar 

  9. J. A. Buege and S. D. Aust, Microsomal lipid peroxidation,Methods Enzymol. 51, 302–310 (1972).

    Google Scholar 

  10. C. Largilliere and S. B. Melancon, Free malondialdehyde determination in human plasma by high-performance liquid chromatography,Anal. Biochem. 170, 123–126 (1988).

    Article  PubMed  CAS  Google Scholar 

  11. M. Bagchi, E. A. Hassoun, D. Bagchi, and S. J. Stohs, Endrin-induced increases in hepatic lipid peroxidation, membrane microviscosity, and DNA damage in rats,Arch. Environ. Contam. Toxicol. 23, 1–5 (1992).

    Article  PubMed  CAS  Google Scholar 

  12. M. A. Shara, P. H. Dickson, D. Bagchi, and S. J. Stohs, Excretion of formaldehyde, malondialdehyde, acetaldehyde and acetone in the urine of rats in response to 2,7,8-tetrachlorodibenzo-p-dioxin, paraquat, endrin and carbon tetrachloride,J. Chromatogr. 576, 221–233 (1992).

    Article  PubMed  CAS  Google Scholar 

  13. S. J. Stohs and D. Bagchi, Oxidative mechanisms in the toxicity of metal ions,Free Rad. Biol. Med. 18, 321–336 (1995).

    Article  PubMed  CAS  Google Scholar 

  14. T. A. Chin and D. M. Templeton, Protective elevations of glutathione and metallothionein in cadmium exposed mesangial cells,Toxicology 77, 145–156 (1993).

    Article  PubMed  CAS  Google Scholar 

  15. W. Li, Y. Zhao, and I. N. Chou, Alterations in cytoskeletal protein sulfhydryls and cellular glutathione in cultured cells exposed to cadmium and nickel ions,Toxicology 77, 65–79 (1993).

    Article  PubMed  CAS  Google Scholar 

  16. D. W. Foster, Diabetes mellitus, inHarrison's Principles of Internal Medicine, E. Braunwald, K. J. Isselbacher, R. G. Petersdorf, J. D. Wilson, J. B. Martin, and A. S. Fauci, eds., McGraw-Hill, New York, pp. 1778–1796 (1987).

    Google Scholar 

  17. D. K. Winters, L. A. Clejan, and A. I. Cederbaum, Oxidation of glycerol to formaldehyde by rat liver microsomes,Biochem. Biophys. Res. Commun. 153, 612–617 (1988).

    Article  PubMed  CAS  Google Scholar 

  18. L. A. Clejan and A. I. Cederbaum, Stimulation of paraquat of microsomal and cytochrome P-450-dependent oxidation of glycerol to formaldehyde,Biochem. J. 295, 781–786 (1993).

    PubMed  CAS  Google Scholar 

  19. S. N. Dhanakoti and H. H. Draper, Response of urinary malondialdehyde to factors that stimulate lipid peroxidation in vivo.Lipids 22, 643–646 (1987).

    Article  PubMed  CAS  Google Scholar 

  20. P. I. Akubue, D. Bagchi, W. J. Ihm, and S. J. Stohs, Excretion of malondialdehyde, formaldehyde, acetaldehyde, acetone and methyl ethyl ketone in the urine of rats given an acute dose of malondialdehyde,Arch. Toxicol. 68, 338–341 (1994).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bagchi, D., Bagchi, M., Hassoun, E.A. et al. Cadmium-induced excretion of urinary lipid metabolites, DNA damage, glutathione depletion, and hepatic lipid peroxidation in sprague-dawley rats. Biol Trace Elem Res 52, 143–154 (1996). https://doi.org/10.1007/BF02789456

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02789456

Index Entries

Navigation