Skip to main content
Log in

Electroforming: Methods, materials, and merchandise

  • Aqueous Processing
  • Overview
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Electroforming is a unique method of manufacturing that is, in essence, very simple. Despite this simplicity, electroforming is also a very powerful and versatile technique that can be utilized in circumstances where other manufacturing approaches are problematical, costly, or impossible. As such, it should form part of the professional armory of designers, metallurgists, material scientists and engineers, as well as of artists. This article provides a general overview of electroforming by indicating sources of reference, the types of methods used, materials to which it can be applied, and a range of applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.B. Diggin, “Modern Electroforming Solutions and Their Applications,” ASTM Special Publication, No. 318 (1962), pp. 10–21.

    Google Scholar 

  2. G. DeGroat, “Electroforming,” Special Report no. 608, American Machinist (New York: McGraw-Hill, 1967). 3.AES-ASTM Electroforming Symposium (Orlando,FL: American Electroplaters’ Society, 1974).

    Google Scholar 

  3. AES-ASTM Electroforming Symposium (Orlando, FL: American Electroplaters’ Society, 1974).

  4. G.A. Malone, “Investigation of Electroforming Techniques,” NASA CR-134776 (Buffalo, NY: Bell Aerospace, 1975).

    Google Scholar 

  5. G.A. DiBari, “Electroforming,” Electroplating Engineering Handbook, ed. L.J. Durney, 4th ed. (New York: Van Nostrand Reinho“, 1984), pp. 474–490.

    Google Scholar 

  6. E.S. Dwarakadasa, R.P. Dambal, and J. Balachandra, eds., Electrodeposition and Electroforming. Proceedings of the International Conference on Electrodeposition and Electroforming (New Delhi, India: Tata McGraw-Hill, 1988).

    Google Scholar 

  7. AES International Symposium on Electroforming/Deposition Forming (Orlando, FL:American Electroplaters’ Society, 1983).

  8. AESF Electroforming Symposium (Orlando, FL: American Electroplaters’ and Surface Finishers’ Society, 1989).

  9. “Standa Practice for Processing Mandrels for Electroforming,” Annual Book of ASTM Standa”, vol. 02.05, B431-85 (Philadelphia, PA:ASTM, 1987), pp. 225-233.

  10. “Standa ” Practice for Engineering Design of Electro-formed Articles, ” in Ref. 9, pp. 262-267.

  11. “Standa ” Practice for Use of Copper and Nickel Electro-forming Solutions,” in Ref. 9, pp. 331-345.

  12. Modern Nickel Electroforming (Toronto, Canada: Inco Ltd., 1991).

  13. S.A. Watson, “Modern Electroforming in Europe,” Proceedings SUR/FIN ’91, AESF International Technical Conference (Orlando, FL: American Electroplaters’ and Surface Finishers’ Society, 1991), pp. 292–311.

    Google Scholar 

  14. W.H. Safranek, The Properties of Electrodeposited Metals and Alloys, 2nd ed. (Orlando, FL: American Electroplaters’ and Surface Finishers’ Society, 1986).

    Google Scholar 

  15. J.W. Dini, Electrodeposition—The Materials Science of Coatings and Substrates (Park Ridge, NJ: Noyes, 1993).

    Google Scholar 

  16. V.P. Greco, Electrocomposites (Orlando, FL: American Electroplaters’ and Surface Finishers’ Society, 1988).

    Google Scholar 

  17. AESF Pulse Plating Symposium (Orlando, FL: American Electroplaters’ and Surface Finishers’ Society, 1991).

  18. S.T. Lam, “Electroforming of High Precision Orifice Plate,” in Ref. 13.

    Google Scholar 

  19. R. Edwa eds, “Electroforming for Holographic Reproduc-tion,” Plating and Surface Finishing, 75 (3) (1988), pp. 30–31.

    Google Scholar 

  20. T. Ahlhom, K. Gnadig, and H. Kreye, “Transferring Relief Holograms Formed in Silver Halide Emulsions into Nickel Foils for Embossing,” Proceedings SUR/FIN’93, AESFInternational Technical Conference (Orlando, FL: American Electroplaters’ and Surface Finishers’ Society, 1993).

    Google Scholar 

  21. F.W. Schneck, “Audio Electroforming Comes of Age with the Video Disk,” Proceedings of the AES International Conference on ElectroformingjDeposition Forming (Orlando, FL: American Electroplaters’ and Surface Finishers’ Society, 1983).

    Google Scholar 

  22. C. Barnes and T.J. Crichton, “Mass Production of a Three-Dimensional Component,” Proceedings of SUR/FIN ’91 AESF International Technical Conference (Orlando, FL: American Electroplaters’ and Surface Finishers’ Society, 1992).

    Google Scholar 

  23. J.W. Dini and H.R. Johnson, “Joining by Electroforming,” Metals Engineering Quarterly (February 1974), pp. 1-7.

  24. J.W. Dini, H.R. Johnson and J.R. Helms, “High Strength Nickel/Cobalt Deposits for Electrojoining Applications,” Proceedings of the 1973 Symposium on Electrodeposited Metals for Selected Applications, MCIC Report/April 1974, MCIC-74-17 (Columbus, OH: Metals and Ceramics Information Center, Batelle Columbus Laboratories, 1974).

    Google Scholar 

  25. J. Galgut, “Methods of Mounting Particles, and in Particular Articles of Jewelry,” South African patent application 93/8827.

  26. P.E.J. Legierse et al., “Electroformed Mo’s for Optical Readout Disks,” Plating and Surface Finishing, 71(12) (1984), pp. 20–25.

    CAS  Google Scholar 

  27. P.E.J. Legierse, “New Developments for Mastering and Electroforming Optical Disks,” Plating and Surface Finishing, 77(1) (1990), pp. 46–50.

    CAS  Google Scholar 

  28. M.J. Sole and T. Szendrei, “Electroformed Copper Shaped Charge Liners,” in Ref. 13.

    Google Scholar 

  29. F.J. Schmidt and I.J. Hess, “Properties of Electroformed Aluminum,” Plating, 55(2) (1966), pp. 229–234.

    Google Scholar 

  30. G. Staffo and C. Turner, “The Electrodeposition of Aluminum from Molten Salts,” Proceedings SUR/FIN ’87, AESF International Technical Conference (Orlando, FL: American Electroplaters’ and Surface Finishers’ Society, 1987).

    Google Scholar 

  31. S. Senderoff, “Electrodeposition of Refractory Metals,” Metallurgical Review, 11 (1966), pp. 97–112.

    Google Scholar 

  32. H. Silman, “Electrodeposition from Molten Salts,” Finishing Industry, 4(4) (1980), pp. 83–90.

    CAS  Google Scholar 

  33. S.K. Pan, J. Thompson, and G.P. Capsimalis, “Electrodeposition of Tantalum/Niobium Alloy From the Molten Fluoride Salts Bath,” in Ref. 30.

    Google Scholar 

  34. G. Marks, D. Blessington, and U. Landau, “Thickness Distribution in Nickel Electroformed Ink Jet Aperture Plates,” in Ref. 13, pp. 231–279.

    Google Scholar 

  35. M. McCormick, “The Design of Electroforming Systems,” in Ref. 30.

    Google Scholar 

  36. J.C. Farmer et al., “Electroforming Process Development for the High Gradient Test Structure,” in Ref. 30.

    Google Scholar 

  37. R.D. King and E.R. Montgomery, “High-Throw Acid Copper Plating Using Inert Electrolyte,” U.S. patent 5,174,886 (December 29,1992).

    Google Scholar 

  38. H.M. Wu, H.J. Shy, and C.H. Huang, “Internal Stress Control of Electroformed Nickel/Iron Alloys,” in Ref. 22.

    Google Scholar 

  39. L.E. Vaaler et al., “Electroforming Nickel with Dynamic Stress Control,” Plating and Surface Finishing, 75(3) (1988), pp. 54–58.

    CAS  Google Scholar 

  40. T. Tang, P. Leisner, and P. Moller, “Improvement of Nickel Deposit Characteristics by Pulse Plating,” in Ref. 20.

    Google Scholar 

  41. A. Maner, S. Harsch, and W. Ehrfe “Mass Production of Microstructures with Extreme Aspect Ratios by Electroforming,” in Ref. 30.

    Google Scholar 

  42. J.W. Dini, “Deposit Structure,” Plating and Surface Finishing, 75(10) (1988), p. 11.

    Google Scholar 

  43. C.E. Johnson and M. Browning, “Status of Electrocom-posites,” Proceedings SUR/FIN ’90, AESF International Conference (Orlando, FL: American Electroplaters’ and Surface Finishers’ Society, 1990).

    Google Scholar 

  44. L.C. Archiba and P.R. Ebdon, “Electrocomposites—A New Opportunity for Metal Finishers,” Metal Finishing, 90(2) (1992), pp. 23–26.

    Google Scholar 

  45. M. Ghouse, M. Viswanathan, and E.G. Ramachandran, “Occlusion Plating of Copper/Silicon Carbide Composites,” Metal Finishing, 78(3) (1980), pp. 31–35.

    CAS  Google Scholar 

  46. J. Zahavi and J. Hazan, “Electrodeposited Composites Containing Diamond Particles,” Plating and Surface Finishing, 70(2) (1983), pp. 57–61.

    CAS  Google Scholar 

  47. J.R. Lewis and RJ. Walter, “Fiber Reinforced Electroformed Superplastic Nickel/Cobalt Matrices,” U.S. patent 4,400,442 (August 23,1983).

    Google Scholar 

  48. E. Gnass, “Electroforming with Dispersion-Haened Coatings for Wear-Resistant Forms,” Galvanotechnik, 78(4) (1987), pp. 960–962.

    CAS  Google Scholar 

  49. M. Vereist, J.P. Bonono, and A. Rousset, “Influence of Physico-Chemical Characteristics of A12O3 and Cr2O3 Particles on the Codeposition in a Nickel Matrix,” Proceedings of Interfinish 92 (October 1992), p. 410.

    Google Scholar 

  50. A. Mayer, K. Standhammer, and K. Johnson, “Electroformed Bulk Nickel/Phosphorus Metallic Glass,” Plating and Surface Finishing,72 (11) (1985), pp. 76–80.

    Google Scholar 

  51. D. Sugg, “Electroforming with Electrolytic Ni-P and Co-P Alloys,” in Ref. 8.

  52. S.T. Lam, “Electroforming of Nickel Phosphorus at Low Phosphorus Content,” Proceedings AESF Electroforming Symposium (Orlando, FL: American Electroplaters’ and Surface Finishers’ Society Inc., 1989).

    Google Scholar 

  53. J. Yahalom and O. Zadok, “Method for the Production of Alloys Possessing High Elastic Modulus and Improved Magnetic Properties by Electrodeposition,” U.S. patent 4,652,348 (March 24,1987).

    Google Scholar 

  54. S.A. Watson, “Economic Aspects and Applications of Electroforming,” Proceedings of Interfinish92 (October 1992), p. 1325.

    Google Scholar 

  55. M.P. Uler, R. Haidle, and R. Altkorn, “Electroformed X-ray Optics,” in Ref. 13.

    Google Scholar 

  56. W.R. Wearmouth, “Applications of New Developments in the Toolmaking Industry,” Plastics and Rubber: Processing, (12) (1977), pp. 131–138.

    Google Scholar 

  57. J.R. Logsdon, “Nickel Electroforming of Very Large Items,” Plating and Surface Finishing, 77(3) (1990), pp. 22–24.

    CAS  Google Scholar 

  58. J.Ph. van Delft, J. van der Waals, and A. Mohan, “Electroforming of Perforated Products,” Transactions of the Institute of Metal Finishing, 53 (1975), pp. 178–183.

    Google Scholar 

  59. S.A. Watson, “European Report: Modern Electroforming in Aerospace Applications,” Plating and Surface Finishing, 78(8) (1991), pp. 32–34.

    CAS  Google Scholar 

  60. R. Suchentrunk, “Electroforming of Space and Aircraft Structures,” Proceedings of Interfinish, 80 (1980), pp. 180–186.

    Google Scholar 

  61. G.T. Marks and L.E. Sergent, “An Electroformed Stencil for Fine Pitch Surface Mount Technology,” in Ref. 22.

    Google Scholar 

  62. Electroformed Nickel in the Plastics Industry (London: Inter national Nickel Limited, 1965).

  63. M.J. Sole, “Electroforming—A Method for the Future?” Proceedings of Wor Gold Council International Gold Jewelry Technology Symposium I Casting, Gold Technology (11) (Milan, Italy: World Gold Council, Industrial Div., November 1993).

    Google Scholar 

  64. M.J. Sole, “Electroplated Anti-ballistic Tiles,” South African patent application 93/6116.

  65. M.J. Sole et al., “Electroformed Replicas of a Gold Parliamentary Mace,” Plating and Surface Finishing, 75(3) (1988), pp. 33–39.

    CAS  Google Scholar 

  66. G. Desthomas and K. Miscioscio, “A Novel Approach to Electroforming Carat Gold Jewelry,” Proceedings SUR/FIN ’90, AESF International Technical Conference (Orlando, FL: American Electroplaters’ and Surface Finishers’ Society, 1990).

    Google Scholar 

  67. F. Simon, “Electroforming in Jewelry Production,” in Ref. 43.

    Google Scholar 

  68. R. Vasudevan, R. Devanathan, and K.G. Chidambaram, “Effect of Ultrasonic Agitation During Electroplating of Nickel and Copper at Room Temperature,” Metal Finishing, 90 (10) (1990), pp. 23–26.

    Google Scholar 

  69. W.H. Safranek and C.H. Layer, “Property Data for Electrodeposits Produced at Rates Above 1 Mil per Minute,” Proceedings of the 1973 Symposium on Electrodeposited Metals for Selected Applications, MCIC Report/April 1974, MCIC-74-1 (Columbus, OH: Metals and Ceramics Information Center, Batelle Columbus Laboratories, 1974).

    Google Scholar 

  70. G. Schaer and P. Krasley, “Electroforming Accelerated by Forced Flow,” Platingand Surface Finishing, 66(12) (1979), pp. 36–38.

    CAS  Google Scholar 

  71. D.P. Barkey, R.H. Muller, and C.W. Tobias, “Roughness Development in Metal Electrodeposition3-I,” Journal of the Electrochemical Society, 136(8) (1989), pp. 2199–2207.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Author’s Note

This article is based in part on a paper titled “Electroforming—from Swords to Plooughshares,” to be presented at the XV Congress of Mining and Metallurgical Institutes, September 1994, Sun City, South Africa. This paper is copyrighted; permission has been obtained to publish some of the work in JOM subject to acknowledgement.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sole, M.J. Electroforming: Methods, materials, and merchandise. JOM 46, 29–35 (1994). https://doi.org/10.1007/BF03220715

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03220715

Keywords

Navigation