Skip to main content
Log in

Existence and Multiplicity of Solutions for a Nonlocal Problem with Critical Sobolev–Hardy Nonlinearities

  • Published:
Mediterranean Journal of Mathematics Aims and scope Submit manuscript

Abstract

The purpose of this paper is to study the nonlocal elliptic equation involving critical Hardy–Sobolev exponents as follows,

$$\begin{aligned}(\mathrm{P}) {\left\{ \begin{array}{ll} (-\Delta )^s u -\mu \frac{u}{|x|^{2s}}= \lambda |u|^{q-2}u +\frac{|u|^{2_\alpha ^*-2}u}{|x|^\alpha } &{} \text {in} \ \Omega ,\\ u=0 &{} \text {in} \ \mathbb {R}^n\setminus \Omega , \end{array}\right. } \end{aligned}$$

where \(\Omega \subset \mathbb {R}^N\) is a bounded domain with Lipschitz boundary, \(0<s<1\), \(\lambda >0\) is a parameter, \(0\le \mu <\mu _0,\) with \(\mu _0=4^s\frac{\Gamma ^2\left( \frac{N+2s}{4}\right) }{\Gamma ^2\left( \frac{N-2s}{4}\right) }\) being the sharp constant of the fractional Hardy–Sobolev in \({\mathbb R}^N,\) \(0< \alpha<2s<N\), \(1<q <2_s^*\) where \(2_s^* = \frac{2N}{N-2s}\) and \(2_\alpha ^* = \frac{2(N-\alpha )}{N-2s}\) are the fractional critical Sobolev and Hardy–Sobolev exponents respectively. The fractional Laplacian \((-\Delta )^s \) with \(s \in (0,1)\) is the non linear non local operator defined on smooth functions by:

$$\begin{aligned} (-\Delta )^s u(x)=-\frac{1}{2} \int _{\mathbb {R}^N} \frac{u(x+y)+u(x-y)-2u(x)}{|y|^{N+2s}}\,\mathrm{d}y,\quad \text {for all } x \in \mathbb {R}^N. \end{aligned}$$

We combine sub and super-solution method combine with min-max method in order to prove the existence and multiplicity of solutions to the problem \((\mathrm{P}).\)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Applebaum, D.: Lévy Processes and Stochastic Calculus, 2nd edn. Cambridge Studies in Advanced Mathematics, vol. 116. Cambridge University Press, Cambridge (2009)

  2. Averna, D., Tersian, S., Tornatore, E.: On the existence and multiplicity of solutions for Dirichlet’s problem for fractional equations. Fract. Calc. Appl. Anal. 19(1), 253–266 (2016)

    Article  MathSciNet  Google Scholar 

  3. Brasco, L., Lindgren, E., Parini, E.: The fractional Cheeger problem. Interfaces Free Bound. 16(2), 419–458 (2014)

    Article  MathSciNet  Google Scholar 

  4. Ghoussoub, N., Shakerian, S.: Borderline variational problems involving fractional Laplacians and critical singularities. Adv. Nonlinear Stud. 15(3), 527–555 (2015)

    Article  MathSciNet  Google Scholar 

  5. Yang, J., Wu, F.: Doubly critical problems involving fractional Laplacians in \({\cal{R}}^N\). Adv. Nonlinear Stud. 17(4), 677–690 (2017)

    Article  MathSciNet  Google Scholar 

  6. Daoues, A., Hammami, A., Saoudi, K.: Multiple positive solutions for a nonlocal PDE with critical Sobolev–Hardy and singular nonlinearities via perturbation method. Fract. Calc. Appl. Anal. 23(3), 837–860 (2020)

    Article  MathSciNet  Google Scholar 

  7. Barriosa, B., Coloradoc, E., Servadeid, R., Soria, F.: A critical fractional equation with concave–convex power nonlinearities. Ann. I. H. Poincaré. 32, 875–900 (2015)

    Article  MathSciNet  Google Scholar 

  8. Saoudi, K.: A critical fractional elliptic equation with singular nonlinearities. Fract. Calc. Appl. Anal. 20(6), 1507–1530 (2017)

    Article  MathSciNet  Google Scholar 

  9. Saoudi, K., Ghosh, S., Choudhuri, D.: Multiplicity and Hööder regularity of solutions for a nonlocal elliptic PDE involving singularity. J. Math. Phys. 60(10), 101509 (2019)

    Article  MathSciNet  Google Scholar 

  10. Servadei, R., Valdinoci, E.: A Brezis–Nirenberg result for nonlocal critical equations in low dimension. Commun. Pure Appl. Anal. 12(6), 2445–2464 (2013)

    Article  MathSciNet  Google Scholar 

  11. Servadei, R., Valdinoci, E.: Variational methods for non-local operators of elliptic type. Discret. Contin. Dyn. Syst. 33(5), 2105–2137 (2013)

    Article  MathSciNet  Google Scholar 

  12. Servadei, R., Valdinoci, E.: Mountain pass solutions for non-local elliptic operators. J. Math. Anal. Appl. 389(2), 887–898 (2012)

    Article  MathSciNet  Google Scholar 

  13. Zhou, Q.M., Wang, K.Q.: Existence and multiplicity of solutions for nonlinear elliptic problems with the fractional Laplacian. Fract. Calc. Appl. Anal. 18(1), 133–145 (2015)

    Article  MathSciNet  Google Scholar 

  14. Cao, D., Han, P.: Solutions for semilinear elliptic equations with critical exponents and Hardy potential. J. Differ. Equ. 205, 521–537 (2004)

    Article  MathSciNet  Google Scholar 

  15. Jiang, R.T., Tang, C.L.: Semilinear elliptic problems involving Hardy–Sobolev–Maźya potential and Hardy–Sobolev critical exponents. Electron. J. Differ. Equ. 2016(12), 1–8 (2016)

    Google Scholar 

  16. Wang, C., Shang, Y.Y.: Existence and multiplicity of positive solutions for a perturbed semilinear elliptic equation with two Hardy–Sobolev critical exponents. J. Math. Anal. Appl. 451, 1198–1215 (2017)

    Article  MathSciNet  Google Scholar 

  17. Frank, R.L., Lieb, E.H., Seiringer, R.: Hardy–Lieb–Thirring inequalities for fractional Schrödinger operators. J. Am. Math. Soc. 21(4), 925–950 (2008)

    Article  Google Scholar 

  18. Chen, W., Mosconi, S., Squassina, M.: Nonlocal problems with critical Hardy non-linearity. J. Funct. Anal. 275(11), 3065–3114 (2018)

    Article  MathSciNet  Google Scholar 

  19. Iannizzotto, A., Mosconi, S., Squassina, M.: \(H^s\) versus \(C^0\)-weighted minimizers. Nonlinear Differ. Equ. Appl. 22(3), 477–497 (2015)

    Article  Google Scholar 

  20. Ghanmi, A., Saoudi, K.: The Nehari manifold for a singular elliptic equation involving the fractional Laplace operator. Fract. Differ. Calc. 6(2), 201–217 (2016)

    Article  MathSciNet  Google Scholar 

  21. Ros-Oton, X., Serra, J.: The Dirichlet problem for the fractional Laplacian: regularity up to the boundary. J. Math. Pures Appl. 101(3), 275–302 (2014)

    Article  MathSciNet  Google Scholar 

  22. Di Nezza, E., Palatucci, G., Valdinoci, E.: Hitchhiker’s guide to the fractional Sobolev spaces. Bull. Sci. Math. 136, 521–573 (2012)

    Article  MathSciNet  Google Scholar 

  23. Ghoussoub, N., Preiss, D.: A general mountain pass principle for locating and classifying critical points. Ann. Inst. H. Poincaré Anal. Non Linéaire 6(5), 321–330 (1989)

    Article  MathSciNet  Google Scholar 

  24. Yang, Y.: The Brezis-Nirenberg problem for the fractional \(p\)-Laplacian involving critical Hardy-Sobolev exponents, preprint, arXiv:1710.04654v1

  25. García Azorero, J.P., Peral Alonso, I.: Some results about the existence of a second positive solution in a quasilinear critical problem. Indiana Univ. Math. J. 43, 941–957 (1994)

    Article  MathSciNet  Google Scholar 

  26. Mosconi, S., Perera, K., Squassina, M., Yang, Y.: A Brezis Nirenberg result for the fractional \(p\)-Laplacian. Trans. Am. Math. Soc. 367(1), 67–102 (2015)

    MathSciNet  MATH  Google Scholar 

  27. Tarantello, G.: On nonhomogeneous elliptic equations involving critical Sobolev exponent. Ann. Inst. H. Poincare Anal. Non Lineaire 9, 281–304 (1992)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the anonymous referees for their carefully reading this paper and their useful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kamel Saoudi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Daoues, A., Hammami, A. & Saoudi, K. Existence and Multiplicity of Solutions for a Nonlocal Problem with Critical Sobolev–Hardy Nonlinearities. Mediterr. J. Math. 17, 167 (2020). https://doi.org/10.1007/s00009-020-01601-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00009-020-01601-8

Mathematics Subject Classifications

Keywords

Navigation