Skip to main content
Log in

Finite Difference Methods for Caputo–Hadamard Fractional Differential Equations

  • Published:
Mediterranean Journal of Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we study finite difference methods for fractional differential equations (FDEs) with Caputo–Hadamard derivatives. First, smoothness properties of the solution are investigated. The fractional rectangular, \({L}_{\mathrm{log},1}\) interpolation, and modified predictor–corrector methods for Caputo–Hadamard fractional ordinary differential equations (FODEs) are proposed through approximating the corresponding equivalent Volterra integral equations. The stability and error estimate of the derived methods are proved as well. Then, we investigate finite difference methods for fractional partial differential equations (FPDEs) with Caputo–Hadamard derivative. By applying the constructed L1 scheme for approximating the time fractional derivative, a semi-discrete difference scheme is derived. The stability and convergence analysis are shown too in detail. Furthermore, a fully discrete scheme is established by the standard second-order difference scheme in spacial direction. Stability and error estimate are also presented. The numerical experiments are displayed to verify the theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adjabi, Y., Jarad, F., Baleanu, D., Abdeljawad, T.: On Cauchy problems with Caputo Hadamard fractional derivatives. J. Comput. Anal. Appl. 21, 661–681 (2016)

    MathSciNet  MATH  Google Scholar 

  2. Ahmad, B., Alsaedi, A., Ntouyas, S.K., Tariboon, J.: Hadamard-Type Fractional Differential Equations. Inclusions and Inequalities. Springer, Cham (2017)

    Book  Google Scholar 

  3. Diethelm, K.: The Analysis of Fractional Differential Equations. Lecture Notes in Mathematics, Springer, Berlin (2010)

  4. Diethelm, K., Ford, N.J., Freed, A.D.: Detailed error analysis for a fractional Adams method. Numer. Algorithms 36, 31–52 (2004)

    Article  MathSciNet  Google Scholar 

  5. Garrappa, R.: Trapezoidal methods for fractional differential equations: theoretical and computational aspects. Math. Comput. Simul. 110, 96–112 (2015)

    Article  MathSciNet  Google Scholar 

  6. Gohar, M., Li, C.P., Yin, C.T.: On Caputo-Hadamard fractional differential equations. Int. J. Comput. Math. 97(7), 1459–1483 (2020)

    Article  MathSciNet  Google Scholar 

  7. Gong, Z.Q., Qian, D.L., Li, C.P., Guo, P.: On the Hadamard type fractional differential system. In: Baleanu, D., Tenreiro Machado, J.A. (eds.) Fractional Dynamics and Control, pp. 159–171. Springer, New York (2012)

  8. Hadamard, J.: Essai sur létude des fonctions données par leur développement de Taylor. J. Math. Pures Appl. 8, 101–186 (1892)

    MATH  Google Scholar 

  9. Jarad, F., Abdeljawad, T., Baleanu, D.: Caputo-type modification of the Hadamard fractional derivatives. Adv. Differ. Equ. 2012, 142 (2012)

    Article  MathSciNet  Google Scholar 

  10. Kilbas, A.A.: Hadamard-type fractional calculus. J. Korean Math. Soc. 38, 1191–1204 (2001)

    MathSciNet  MATH  Google Scholar 

  11. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier Science, Amsterdam (2006)

    MATH  Google Scholar 

  12. Li, C.P., Yi, Q., Chen, A.: Finite difference methods with non-uniform meshes for nonlinear fractional differential equations. J. Comput. Phys. 316, 614–631 (2016)

    Article  MathSciNet  Google Scholar 

  13. Li, C.P., Zeng, F.H.: Numerical Methods for Fractional Calculus. Chapman and Hall/CRC, Boca Raton (2015)

    Book  Google Scholar 

  14. Li, M., Huang, C.M.: ADI Galerkin FEMs for the 2D nonlinear time-space fractional diffusion-wave equation. Int. J. Model. Simulat. Sci. Comput. 8, 1750025 (2017)

    Article  Google Scholar 

  15. Li, M., Huang, C.M., Wang, P.D.: Galerkin finite element method for nonlinear fractional Schrödinger equations. Numer. Algorithms 74, 499–525 (2017)

    Article  MathSciNet  Google Scholar 

  16. Ma, L., Li, C.P.: On Hadamard fractional calculus. Fractals 25, 1750033 (2017)

    Article  MathSciNet  Google Scholar 

  17. Ma, L., Li, C.P.: On finite part integrals and Hadamard-type fractional derivatives. J. Comput. Nonlinear Dyn. 13, 090905 (2018)

    Article  Google Scholar 

  18. Oldham, K.B., Spanier, J.: The Fractional Calculus. Academic Press, New York (1974)

    MATH  Google Scholar 

  19. Podlubny, I.: Fractional Differential Equations. Academic Press, New York (1999)

    MATH  Google Scholar 

  20. Zhang, Y.N., Sun, Z.Z., Liao, H.L.: Finite difference methods for the time fractional diffusion equation on non-uniform meshes. J. Comput. Phys. 265, 195–210 (2014)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changpin Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The work was partially supported by the National Natural Science Foundation of China under Grant no. 11872234.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gohar, M., Li, C. & Li, Z. Finite Difference Methods for Caputo–Hadamard Fractional Differential Equations. Mediterr. J. Math. 17, 194 (2020). https://doi.org/10.1007/s00009-020-01605-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00009-020-01605-4

Keywords

Mathematics Subject Classification

Navigation