Skip to main content
Log in

On Critical Schrödinger–Kirchhoff-Type Problems Involving the Fractional p-Laplacian with Potential Vanishing at Infinity

  • Published:
Mediterranean Journal of Mathematics Aims and scope Submit manuscript

Abstract

The aim of this paper is to study the existence of solutions for critical Schrödinger–Kirchhoff-type problems involving a nonlocal integro-differential operator with potential vanishing at infinity. As a particular case, we consider the following fractional problem:

$$\begin{aligned}&M\left( \iint _{{\mathbb {R}}^{2N}}\frac{|u(x)-u(y)|^{p}}{|x-y|^{N+sp}}\mathrm{dxdy}+\int _{{\mathbb {R}}^N}V(x)|u(x)|^{p}\mathrm{{d}}x\right) ((-\Delta )_p^{s}u(x)+V(x)|u|^{p-2}u)\\&\quad =K(x)(\lambda f(x,u)+|u|^{p_s^{*}-2}u), \end{aligned}$$

where \(M:[0, \infty )\rightarrow [0, \infty )\) is a continuous function, \((-\Delta )_p^{s}\) is the fractional p-Laplacian, \(0<s<1<p<\infty \) with \(sp<N,\) \(p_s^{*}=Np/(N-ps),\) KV are nonnegative continuous functions satisfying some conditions, and f is a continuous function on \({\mathbb {R}}^N\times {\mathbb {R}}\) satisfying the Ambrosetti–Rabinowitz-type condition, \(\lambda >0\) is a real parameter. Using the mountain pass theorem, we obtain the existence of the above problem in suitable space W. For this, we first study the properties of the embedding from W into \(L_{K}^{\alpha }({\mathbb {R}}^N), \alpha \in [p, p_s^{*}].\) Then, we obtain the differentiability of energy functional with some suitable conditions on f. To the best of our knowledge, this is the first existence results for degenerate Kirchhoff-type problems involving the fractional p-Laplacian with potential vanishing at infinity. Finally, we fill some gaps of papers of do Ó et al. (Commun Contemp Math 18: 150063, 2016) and Li et al. (Mediterr J Math 14: 80, 2017).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. After submitting our work, we find that Lemmas 2.1 and 2.2 are also independently proved by Isernia [17].

References

  1. Ambrosetti, A., Felli, V., Malchiodi, A.: Ground states of nonlinear Schrödinger equations with potentials vanishing at infinity. J. Eur. Math. Soc. 7, 117–144 (2005)

    Article  MathSciNet  Google Scholar 

  2. Ambrosio, V., Isernia, T.: Sign-changing solutions for a class of Schrödinger equations with vanishing potentials. Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl. 29, 127–152 (2018)

    Article  MathSciNet  Google Scholar 

  3. Ambrosio, V., Figueiredo, G.M., Isernia, T., Bisci, G.Molica: Sign-changing solutions for a class of zero mass nonlocal Schrödinger equations. Adv. Nonlinear Stud. 19, 113–132 (2019)

    Article  MathSciNet  Google Scholar 

  4. Ambrosio, V., Servadei, R.: Supercritical fractional Kirchhoff type problems. Fract. Calc. Appl. Anal. 22, 1351–1377 (2019)

    Article  MathSciNet  Google Scholar 

  5. Ambrosio, V., Isernia, T., Rădulescu, V.: Concentration of positive solutions for a class of fractional \(p\)-Kirchhoff type equations. Proc. R. Soc. Edinb. Sect. A (2020). https://doi.org/10.1017/prm.2020.32

    Article  Google Scholar 

  6. Alves, C.O., Souto, M.A.: Existence of solutions for a class of nonlinear Schrödinger equations with potential vanishing at infinity. J. Differ. Equ. 254, 1977–1991 (2013)

    Article  Google Scholar 

  7. Berestycki, H., Lions, P.L.: Nonlinear scalar field equations. I. Existence of a ground state. Arch. Ration. Mech. Anal. 82, 313–346 (1983)

    Article  MathSciNet  Google Scholar 

  8. Brézis, H.: Functional Analysis. Sobolev Spaces and Partial Differential Equations. Universitext, Springer, New York (2011)

    MATH  Google Scholar 

  9. Caponi, M., Pucci, P.: Existence theorems for entire solutions of stationary Kirchhoff fractional \(p\)-Laplacian equations. Ann. Mat. Pura Appl. 195, 2099–2129 (2016)

    Article  MathSciNet  Google Scholar 

  10. Chipot, M., Rodrigues, J.F.: On a class of nonlocal nonlinear elliptic problems. Rairo Modelisation Mathéatique et Analyse Mumérique 26, 447–467 (1992)

  11. Cheng, B., Tang, X.: New existence of solutions for the fractional \(p\)-Laplacian equations with sign-changing potential and nonlinearity. Mediterr. J. Math. 13, 3373–3387 (2016)

    Article  MathSciNet  Google Scholar 

  12. Deng, Y., Li, Y., Shuai, W.: Existence of solutions for a class of \(p\)-Laplacian type equation with critical growth and potential vanishing at infinity. Discrete Contin. Dyn. Syst. 36, 683–699 (2016)

    MathSciNet  MATH  Google Scholar 

  13. do Ó, J.M., Miyagaki, O.H., Squassina, M.: Critical and subcritical fractional problems with vanishing potentials. Commun. Contemp. Math. 18, 1550063 (2016)

    Article  MathSciNet  Google Scholar 

  14. Fiscella, A., Valdinoci, E.: A critical Kirchhoff type problem involving a nonlocal operator. Nonlinear Anal. 94, 156–170 (2014)

    Article  MathSciNet  Google Scholar 

  15. Fiscella, A., Pucci, P.: \(p\)-fractional Kirchhoff equations involving critical nonlinearities. Nonlinear Anal. Real World Appl. 35, 350–378 (2017)

    Article  MathSciNet  Google Scholar 

  16. Isernia, T.: Sign-changing solutions for a fractional Kirchhoff equation. Nonlinear Anal. 190, 111623–20 (2020)

    Article  MathSciNet  Google Scholar 

  17. Isernia, T.: Fractional \(p\)&\(q\)-Laplacian problems with potentials vanishing at infinity. Opusc. Math. 40, 93–110 (2020)

    Article  MathSciNet  Google Scholar 

  18. Lions, J.L.: On some questions in boundary value problems of mathematical physics, contemporary developments in continum mechanics and partial differential equations. Proc. Int. Symp. (Inst. Math. Univ. Fed. Rio de Janeiro, Rio de Janeiro, North-Holland Mathematics Studies) 30, 284–346 (1977)

    Google Scholar 

  19. Li, Q., Teng, K., Wu, X.: Existence of positive solutions for a class of critical fractional Schrödinger equations with potential vanishing at infinity. Mediterr. J. Math. 14, 80 (2017)

    Article  Google Scholar 

  20. Mingqi, X., Rădulescu, V., Zhang, B.: Combined effects for fractional Schrödinger–Kirchhoff systems with critical nonlinearities. ESAIM COCV 24, 1249–1273 (2018)

    Article  Google Scholar 

  21. Molica, B.G., Rădulescu, V., Servadei, R.: Variational Methods for Nonlocal Fractional Problems. Cambridge University Press, Cambridge (2016)

    Book  Google Scholar 

  22. Nezza, E.D., Palatucci, G., Valdinoci, E.: Hitchhiker’s guide to the fractional Sobolev spaces. Bull. Sci. Math. 136, 521–573 (2012)

    Article  MathSciNet  Google Scholar 

  23. Pucci, P., Xiang, M., Zhang, B.: Multiple solutions for nonhomogeneous Schrödinger–Kirchhoff type equations involving the fractional \(p\)-Laplacian in \(\mathbb{R}^N.\). Calc. Var. Partial Differ. Equ. 54, 2785–2806 (2015)

    Article  Google Scholar 

  24. Pucci, P., Xiang, M., Zhang, B.: Existence and multiplicity of entire solutions for fractional \(p\)-Kirchhoff equations. Adv. Nonlinear Anal. 5, 27–55 (2016)

    MathSciNet  MATH  Google Scholar 

  25. Pucci, P., Xiang, M., Zhang, B.: Existence results for Schrödinger–Choquard–Kirchhoff equations involving the fractional \(p\)-Laplacian. Adv. Calc. Var. 12, 253–275 (2019)

    Article  MathSciNet  Google Scholar 

  26. Piersanti, P., Pucci, P.: Entire solutions for critical \(p\)-fractional Hardy Schrödinger Kirchhoff equations. Publ. Mat. 62, 3–36 (2018)

    Article  MathSciNet  Google Scholar 

  27. Rabinowitz, P.H.: Minimax methods in critical point theory with applications to differential equations. In: CBMS Regional Conference Series in Mathematics, vol. 65. American Mathematical Society, Providence (1986)

  28. Struwe, M.: Variational Methods, Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems. Ergeb. Math. GrenzgebErgeb. Math. Grenzgeb. Springer, Berlin (1990)

    Google Scholar 

  29. Willem, M.: Minimax Theorems. Birkhäuser, Basel (1996)

    Book  Google Scholar 

  30. Xiang, M., Zhang, B., Zhang, X.: A critical Kirchhoff type problem involving the fractional \(p\)-Laplacian in \({\mathbb{R}}^N.\). Complex Var. Elliptic Equ. 63, 652–670 (2018)

    Article  MathSciNet  Google Scholar 

  31. Xiang, M., Zhang, B., Rădulescu, V.: Superlinear Schrödinger–Kirchhoff type problems involving the fractional \(p\)-Laplacian and critical exponent. Adv. Nonlinear Anal. 9, 690–709 (2020)

    Article  MathSciNet  Google Scholar 

  32. Zhang, Y., Tang, X., Zhang, J.: Existence of infinitely many solutions for fractional \(p\)-Laplacian Schrödinger–Kirchhoff type equations with sign-changing potential. J. RACSAM 113, 569 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

Nguyen Van Thin is supported by Ministry of Education and Training of Vietnam under project with the name “Weak solutions to some class equations, system of partial differential equations containing fractional p-Laplace and Bessel operator” and grant number B2020-TNA-06. M. Xiang was supported by the Natural Science Foundation of China (No. 11601515) and the Fundamental Research Funds for the Central Universities (No. 3122017080). B. Zhang was supported by the Natural Science Foundation of China (No. 11871199) and Heilongjiang Province Postdoctoral Startup Foundation (LBH-Q18109), and the Cultivation Project of Young and Innovative Talents in Universities of Shandong Province.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Binlin Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Van Thin, N., Xiang, M. & Zhang, B. On Critical Schrödinger–Kirchhoff-Type Problems Involving the Fractional p-Laplacian with Potential Vanishing at Infinity. Mediterr. J. Math. 18, 1 (2021). https://doi.org/10.1007/s00009-020-01619-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00009-020-01619-y

Mathematics Subject Classification

Keywords

Navigation