Skip to main content
Log in

Leray’s Problem for the Nonstationary Micropolar Fluid Flow

  • Published:
Mediterranean Journal of Mathematics Aims and scope Submit manuscript

Abstract

Motivated by the pipe network problems, in this paper, we consider the Leray’s problem for the nonstationary flow of a micropolar fluid. We prove that in an unbounded domain with cylindrical outlets to infinity, there exists a unique solution to the nonlinear micropolar equations which exponentially tends to the generalized nonstationary micropolar Poiseuille solution in each cylindrical outlet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Eringen, A.C.: Theory of micropolar fluids. J. Math. Mech. 16, 1–18 (1966)

    MathSciNet  Google Scholar 

  2. Srinivasacharya, D., Srikanth, D.: Flow of a micropolar fluid through cathererized artery—a mathematical model. Int. J. Biomath. 5(2) (2013)

  3. Maddah, S., Navidbahksh, M., Atefi, G.: Continuous model for dispersion of discrete blood cells with an ALE formulation of pulsatile micropolar fluid flow in a flexible tube. J. Dispers. Sci. Technol. 34, 1165–1172 (2013)

    Article  Google Scholar 

  4. Haghighi, A.R., Shahbazi, M.: Mathematical modeling of micropolar fluid flow through an overlapping arterial stenosis. Int. J. Biomath. 08, 1550056 (2015)

    Article  MathSciNet  Google Scholar 

  5. Ahmed, A., Nadeem, S.: Effects of magnetohydrodynamics and hybrid nanoparticles on a micropolar fluid with 6-types if stenosis. Results Phys. 7, 4130–4139 (2017)

    Article  Google Scholar 

  6. Dupuy, D., Panasenko, G., Stavre, R.: Asymptotic methods for micropolar fluids in a tube structure. Math. Mod. Methods Appl. Sci. 14, 735–758 (2004)

    Article  MathSciNet  Google Scholar 

  7. Dupuy, D., Panasenko, G., Stavre, R.: Asymptotic solution for a micropolar flow in a curvilinear channel. Z. Angew. Math. Mech. 88, 793–807 (2008)

    Article  MathSciNet  Google Scholar 

  8. Pažanin, I.: Asymptotic behaviour of micropolar fluid flow through a curved pipe. Acta Appl. Math. 116, 1–25 (2011)

    Article  MathSciNet  Google Scholar 

  9. Boukrouche, M., Paoli, L.: Asymptotic analysis of a micropolar fluid flow in a thin domain with a free and rough boundary. SIAM J. Math. Anal. 44, 1211–1256 (2012)

    Article  MathSciNet  Google Scholar 

  10. Pažanin, I.: Investigation of micropolar fluid flow in a helical pipe via asymptotic analysis. Commun. Nonlinear Sci. Numer. Simul. 18, 528–540 (2013)

    Article  MathSciNet  Google Scholar 

  11. Beneš, M., Pažanin, I., Radulović, M.: Rigorous derivation of the asymptotic model describing a nonsteady micropolar fluid flow through a thin pipe. Comput. Math. Appl. 76, 2035–2060 (2018)

    Article  MathSciNet  Google Scholar 

  12. Lukaszewicz, G.: Micropolar Fluids. Theory and Applications, Modeling and Simulation in Science, Engineering and Technology. Birkhäuser, Boston (1999)

    MATH  Google Scholar 

  13. Marušić-Paloka, E.: Rigorous justification of the Kirchhoff law for junction of thin pipes filled with viscous fluid. Asymptot. Anal. 33, 51–66 (2003)

    MathSciNet  MATH  Google Scholar 

  14. Beneš, M., Pažanin, I.: Effective flow of incompressible micropolar fluid through a system of thin pipes. Acta Appl. Math. 143, 29–43 (2016)

    Article  MathSciNet  Google Scholar 

  15. Galdi, G.P.: An Introduction to the Mathematical Theory of the Navier–Stokes Equations, vol. I. Springer, Berlin (1994)

    MATH  Google Scholar 

  16. Pileckas, K., Keblikas, V.: On the existence of the nonstationary Poiseuille solution. Sib. Math. J. 46, 514–526 (2005)

    Article  MathSciNet  Google Scholar 

  17. Pileckas, K.: On behavior of nonstationary Poiseuille solutions as \(t \rightarrow \infty \). Sib. Math. J. 46, 890–900 (2005)

    MathSciNet  MATH  Google Scholar 

  18. Pileckas, K.: On the nonstationary linearized Navier–Stokes problem in domains with cylindrical outlets to infinity. Math. Ann. 332, 395–419 (2005)

    Article  MathSciNet  Google Scholar 

  19. Pileckas, K.: Existence of solutions with the prescribed flux of the Navier–Stokes system in an infinite cylinder. J. Math. Fluid Mech. 8, 542–563 (2006)

    Article  MathSciNet  Google Scholar 

  20. Pileckas, K.: Navier–Stokes system in domains with cylindrical outlets to infinity. Leray’s problem, Handbook of Mathematical Fluid Dynamics, vol. 4, chap. 8. Elsevier, Amsterdam, pp. 445–647 (2007)

  21. Silva, F.V.: Leray’s problem for a viscous incompressible micropolar fluid. J. Math. Anal. Appl. 306, 692–713 (2005)

    Article  MathSciNet  Google Scholar 

  22. Beneš, M., Pažanin, I., Radulović, M.: Existence and uniqueness of the generalized Poiseuille solution for nonstationary micropolar flow in an infinite cylinder. Electron. J. Differ. Equ. 2018(148), 1–26 (2018)

    MathSciNet  MATH  Google Scholar 

  23. Ladyzhenskaya, O.A.: The Mathematical Theory of Viscous Incompressible Flow. Gordon and Breach, New York (1969)

    MATH  Google Scholar 

  24. Lukaszewicz, G.: On the existence, uniqueness and asymptotic properties for solutions of flows of asymmetric fluids. Rend. Accad. Nac. Sci. Mem. Mat. 13, 105–120 (1989)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The first author has been financially supported by the European Regional Development Fund (Project No. CZ.02.1.01/0.0/0.0/16_019/0000778) within activities of the Center of Advanced Applied Sciences (CAAS). The second and the third authors of this work have been supported by the Croatian Science Foundation (scientific project: Asymptotic analysis of the boundary value problems in continuum mechanics-AsAn). The authors would like to thank the referee for his/her helpful comments and suggestions that helped to improve the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor Pažanin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Proof of Theorem 5.2

Step 1. Let us first take in the integral identity (5.2) test functions \(\varvec{\varphi }(x,t)=E_{\varvec{\beta }}^{(k)}(x){\mathbf {u}}(x,t)+{\mathbf {Z}}^{(k)}(x,t)\) and \(\varvec{\psi }(x,t)=E_{\varvec{\beta }}^{(k)}(x){\mathbf {w}}(x,t)\), where \(E_{\varvec{\beta }}^{(k)}(x)\) is the exponentially decaying “step” weight function given with (see Sect. 2.2):

$$\begin{aligned} E_{\varvec{\beta }}^{(k)}(x)={\left\{ \begin{array}{ll} 1, &{}\quad x \in \Omega _{(0)},\\ E_{\beta _{j}}(x_{1}^{(j)}), &{}\quad x \in \Omega _{jk},\ j=1,\dots ,m, \\ E_{\beta _{j}}(k), &{}\quad x \in \Omega _{j} {\setminus } \Omega _{jk},\ j=1,\dots ,m, \end{array}\right. } \end{aligned}$$

while \(E_{\beta _{j}}\) is a weight function satisfying (2.1) and \({\mathbf {Z}}^{(k)}(x,t)\) is the vector field constructed in Lemma 2.4. It can be easily verified that \(\text{ div } \varvec{\varphi }(x,t)=\text{ div } (E_{\varvec{\beta }}^{(k)}(x){\mathbf {u}}(x,t))+\text{ div } {\mathbf {Z}}^{(k)}(x,t)=0\) and \(\varvec{\varphi }\vert _{\partial \Omega }=0\). We thus obtain the relations:

$$\begin{aligned} \begin{aligned}&\int _{0}^{t} \int _{\Omega } E_{\varvec{\beta }}^{(k)} \frac{\partial {\mathbf {u}}}{\partial \tau } \cdot {\mathbf {u}}\mathrm{d}x\mathrm{d}\tau +\int _{0}^{t} \int _{\Omega } \frac{\partial {\mathbf {u}}}{\partial \tau } \cdot {\mathbf {Z}}^{(k)}\mathrm{d}x\mathrm{d}\tau \\&\qquad +\mu \int _{0}^{t} \int _{\Omega } \nabla {\mathbf {u}} \cdot \nabla (E_{\varvec{\beta }}^{(k)} {\mathbf {u}}+{\mathbf {Z}}^{(k)}))\mathrm{d}x\mathrm{d}\tau \\&\quad =a \int _{0}^{t} \int _{\Omega } \text{ rot } {\mathbf {w}} \cdot (E_{\varvec{\beta }}^{(k)} {\mathbf {u}}+{\mathbf {Z}}^{(k)})\mathrm{d}x\mathrm{d}\tau +\int _{0}^{t} \int _{\Omega } {\mathbf {f}} \cdot (E_{\varvec{\beta }}^{(k)} {\mathbf {u}}+{\mathbf {Z}}^{(k)})\mathrm{d}x\mathrm{d}\tau ,\\&\int _{0}^{t} \int _{\Omega } E_{\varvec{\beta }}^{(k)} \frac{\partial {\mathbf {w}}}{\partial \tau } \cdot {\mathbf {w}}\mathrm{d}x\mathrm{d}\tau +\alpha \int _{0}^{t} \int _{\Omega } \nabla {\mathbf {w}} \cdot \nabla (E_{\varvec{\beta }}^{(k)}{\mathbf {w}})\mathrm{d}x\mathrm{d}\tau \\&\qquad +\beta \int _{0}^{t} \int _{\Omega } \text{ div } {\mathbf {w}}\ \text{ div }(E_{\varvec{\beta }}^{(k)}{\mathbf {w}})\mathrm{d}x\mathrm{d}\tau \\&\qquad +2a \int _{0}^{t} \int _{\Omega } {\mathbf {w}} \cdot (E_{\varvec{\beta }}^{(k)}{\mathbf {w}})\mathrm{d}x\mathrm{d} \tau =a \int _{0}^{t} \int _{\Omega } \text{ rot } {\mathbf {u}} \cdot (E_{\varvec{\beta }}^{(k)}{\mathbf {w}})\mathrm{d}x\mathrm{d}\tau \\&\qquad +\int _{0}^{t} \int _{\Omega } {\mathbf {g}} \cdot (E_{\varvec{\beta }}^{(k)}{\mathbf {w}})\mathrm{d}x\mathrm{d}\tau . \end{aligned}\nonumber \\ \end{aligned}$$
(A.1)

There hold the following relations:

$$\begin{aligned} \begin{aligned} \int _{0}^{t} \int _{\Omega } E_{\varvec{\beta }}^{(k)}(x) \frac{\partial {\mathbf {u}}(x,\tau )}{\partial \tau }\cdot {\mathbf {u}}(x,\tau )\mathrm{d}x\mathrm{d}\tau&=\frac{1}{2} \int _{\Omega } E_{\varvec{\beta }}^{(k)}(x) \vert {\mathbf {u}}(x,t) \vert ^{2}\mathrm{d}x\\&\quad -\,\frac{1}{2}\int _{\Omega } E_{\varvec{\beta }}^{(k)}(x) \vert {\mathbf {a}}(x) \vert ^{2}\mathrm{d}x,\\ \int _{0}^{t} \int _{\Omega } \nabla {\mathbf {u}} \cdot \nabla (E_{\varvec{\beta }}^{(k)} {\mathbf {u}})\mathrm{d}x\mathrm{d}\tau&=\int _{0}^{t} \int _{\Omega } E_{\varvec{\beta }}^{(k)} \vert \nabla {\mathbf {u}} \vert ^{2}\mathrm{d}x\mathrm{d}\tau \\&\quad +\,\int _{0}^{t} \int _{\Omega } \nabla {\mathbf {u}} \cdot (\nabla E_{\varvec{\beta }}^{(k)} {\mathbf {u}})\mathrm{d}x\mathrm{d}\tau ,\\ \int _{0}^{t} \int _{\Omega } \text{ div } {\mathbf {w}} \text{ div }(E_{\varvec{\beta }}^{(k)} {\mathbf {w}})\mathrm{d}x\mathrm{d}\tau&=\int _{0}^{t} \int _{\Omega } \text{ div } {\mathbf {w}} \nabla E_{\varvec{\beta }}^{(k)} \cdot {\mathbf {w}}\mathrm{d}x\mathrm{d}\tau \\&\quad +\,\int _{0}^{t} \int _{\Omega } E_{\varvec{\beta }}^{(k)} (\text{ div } {\mathbf {w}})^{2}\mathrm{d}x\mathrm{d}\tau . \end{aligned}\nonumber \\ \end{aligned}$$
(A.2)

Using relations (A.2) in (A.1), we obtain:

$$\begin{aligned} \begin{aligned}&\frac{1}{2} \int _{\Omega } E_{\varvec{\beta }}^{(k)} \vert {\mathbf {u}} \vert ^{2} \mathrm{d}x+\mu \int _{0}^{t} \int _{\Omega } E_{\varvec{\beta }}^{(k)} \vert \nabla {\mathbf {u}} \vert ^{2} \mathrm{d}x\mathrm{d}\tau \\&\quad =\frac{1}{2} \int _{\Omega } E_{\varvec{\beta }}^{(k)} \vert {\mathbf {a}} \vert ^{2} \mathrm{d}x-\int _{0}^{t} \int _{\Omega } \frac{\partial {\mathbf {u}}}{\partial \tau } \cdot {\mathbf {Z}}^{(k)}\mathrm{d}x\mathrm{d}\tau \\&\qquad -\mu \int _{0}^{t} \int _{\Omega } \nabla {\mathbf {u}} \cdot (\nabla E_{\varvec{\beta }}^{(k)} {\mathbf {u}}\\&\qquad +\nabla {\mathbf {Z}}^{(k)})\mathrm{d}x\mathrm{d}\tau +a\int _{0}^{t} \int _{\Omega } \text{ rot } {\mathbf {w}} \cdot (E_{\varvec{\beta }}^{(k)} {\mathbf {u}}\\&\qquad +{\mathbf {Z}}^{(k)})\mathrm{d}x\mathrm{d}\tau +\int _{0}^{t} \int _{\Omega } {\mathbf {f}} \cdot (E_{\varvec{\beta }}^{(k)} {\mathbf {u}}+{\mathbf {Z}}^{(k)})\mathrm{d}x \mathrm{d}\tau \\&\qquad \frac{1}{2} \int _{\Omega } E_{\varvec{\beta }}^{(k)} \vert {\mathbf {w}} \vert ^{2} \mathrm{d}x+\alpha \int _{0}^{t} \int _{\Omega } E_{\varvec{\beta }}^{(k)} \vert \nabla {\mathbf {w}} \vert ^{2}\mathrm{d}x\mathrm{d}\tau +\beta \int _{0}^{t} \int _{\Omega } E_{\varvec{\beta }}^{(k)} (\text{ div } {\mathbf {w}})^{2}\mathrm{d}x\mathrm{d}\tau \\&\qquad +2a\int _{0}^{t} \int _{\Omega } E_{\varvec{\beta }}^{(k)} \vert {\mathbf {w}} \vert ^{2}\mathrm{d}x\mathrm{d}\tau \\&\quad =\frac{1}{2} \int _{\Omega } E_{\varvec{\beta }}^{(k)} \vert {\mathbf {b}} \vert ^{2}\mathrm{d}x-\alpha \int _{0}^{t} \int _{\Omega } \nabla {\mathbf {w}} \cdot (\nabla E_{\varvec{\beta }}^{(k)}{\mathbf {w}})\mathrm{d}x\mathrm{d}\tau \\&\qquad -\beta \int _{0}^{t} \int _{\Omega } \text{ div } {\mathbf {w}} \nabla E_{\varvec{\beta }}^{(k)} \cdot {\mathbf {w}}\mathrm{d}x\mathrm{d}\tau \\&\qquad +a \int _{0}^{t} \int _{\Omega } \text{ rot } {\mathbf {u}} \cdot (E_{\varvec{\beta }}^{(k)}{\mathbf {w}})\mathrm{d}x\mathrm{d}\tau +\int _{0}^{t} \int _{\Omega } {\mathbf {g}} \cdot (E_{\varvec{\beta }}^{(k)} {\mathbf {w}})\mathrm{d}x\mathrm{d}\tau . \end{aligned}\nonumber \\ \end{aligned}$$
(A.3)

We estimate the terms on the right-hand side of (A.3) using estimate (2.1)\(_{3}\) for the weight function, Lemma 2.1 and 2.4 in the following way:

$$\begin{aligned} \int _{0}^{t} \int _{\Omega } \frac{\partial {\mathbf {u}}}{\partial \tau } \cdot {\mathbf {Z}}^{(k)}\mathrm{d}x\mathrm{d}\tau\le & {} \left( \int _{0}^{t} \int _{\Omega } E_{\varvec{\beta }}^{(k)} \vert {\mathbf {u}}_{\tau } \vert ^{2} \right) ^{1/2} \left( \int _{0}^{t} \int _{\Omega } E_{-\varvec{\beta }}^{(k)} \vert \nabla {\mathbf {Z}}^{(k)} \vert ^{2} \right) ^{1/2} \nonumber \\\le & {} c \gamma _{*} \left( \int _{0}^{t} \int _{\Omega } E_{\varvec{\beta }}^{(k)} \vert {\mathbf {u}}_{\tau } \vert ^{2}+\int _{0}^{t}\int _{\Omega } E_{\varvec{\beta }}^{(k)} \vert \nabla {\mathbf {u}} \vert ^{2} \right) ,\nonumber \\ \int _{0}^{t} \int _{\Omega } \nabla {\mathbf {u}} \cdot \nabla E_{\varvec{\beta }}^{(k)} {\mathbf {u}}\mathrm{d}x\mathrm{d}\tau\le & {} c \gamma _{*} \left( \int _{0}^{t} \int _{\Omega } E_{\varvec{\beta }}^{(k)} \vert \nabla {\mathbf {u}} \vert ^{2} \right) ^{1/2} \left( \int _{0}^{t} \int _{\Omega } E_{\varvec{\beta }}^{(k)} \vert \nabla {\mathbf {u}} \vert ^{2} \right) ^{1/2}\nonumber \\\le & {} c\gamma _{*} \left( \int _{0}^{t} \int _{\Omega } E_{\varvec{\beta }}^{(k)} \vert \nabla {\mathbf {u}} \vert ^{2} \right) ,\nonumber \\ \int _{0}^{t} \int _{\Omega } \nabla {\mathbf {u}} \cdot \nabla {\mathbf {Z}}^{(k)} \mathrm{d}x\mathrm{d}\tau\le & {} \left( \int _{0}^{t} \int _{\Omega } E_{\varvec{\beta }}^{(k)} \vert \nabla {\mathbf {u}} \vert ^{2} \right) ^{1/2} \left( \int _{0}^{t} \int _{\Omega } E_{-\varvec{\beta }}^{(k)} \vert \nabla {\mathbf {Z}}^{(k)} \vert ^{2} \right) ^{1/2} \nonumber \\\le & {} c \gamma _{*} \int _{0}^{t} \int _{\Omega } E_{\varvec{\beta }}^{(k)} \vert \nabla {\mathbf {u}} \vert ^{2},\nonumber \\ \int _{0}^{t} \int _{\Omega } \text{ rot } {\mathbf {w}} \cdot E_{\varvec{\beta }}^{(k)} {\mathbf {u}}\mathrm{d}x\mathrm{d}\tau= & {} \int _{0}^{t} \int _{\Omega } [E_{\varvec{\beta }}^{(k)}]^{1/2} \text{ rot } {\mathbf {w}} \cdot [E_{\varvec{\beta }}^{(k)}]^{1/2} {\mathbf {u}} \nonumber \\\le & {} \frac{\varepsilon _{1}}{2}\int _{0}^{t} \int _{\Omega } E_{\varvec{\beta }}^{(k)} \vert \nabla {\mathbf {w}} \vert ^{2}+\frac{1}{2\varepsilon _{1}} \int _{0}^{t} \int _{\Omega } E_{\varvec{\beta }}^{(k)} \vert {\mathbf {u}} \vert ^{2}, \nonumber \\ \int _{0}^{t} \int _{\Omega } \text{ rot } {\mathbf {w}} \cdot {\mathbf {Z}}^{(k)}\mathrm{d}x\mathrm{d}\tau\le & {} c \left( \int _{0}^{t} \int _{\Omega } E_{\varvec{\beta }}^{(k)} \vert \nabla {\mathbf {w}} \vert ^{2} \right) ^{1/2} \left( \int _{0}^{t} \int _{\Omega } E_{-\varvec{\beta }}^{(k)} \vert \nabla {\mathbf {Z}}^{(k)} \vert ^{2} \right) ^{1/2}\nonumber \\\le & {} c \gamma _{*} \left( \int _{0}^{t} \int _{\Omega } E_{\varvec{\beta }}^{(k)} \vert \nabla {\mathbf {w}} \vert ^{2}+\int _{0}^{t}\int _{\Omega } E_{\varvec{\beta }}^{(k)} \vert \nabla {\mathbf {u}} \vert ^{2} \right) , \nonumber \\ \int _{0}^{t} \int _{\Omega } {\mathbf {f}} \cdot E_{\varvec{\beta }}^{(k)} {\mathbf {u}}\mathrm{d}x\mathrm{d}\tau= & {} \int _{0}^{t} \int _{\Omega } [E_{\varvec{\beta }}^{(k)}]^{1/2} {\mathbf {f}} \cdot [E_{\varvec{\beta }}^{(k)}]^{1/2} {\mathbf {u}}\nonumber \\\le & {} \frac{c}{\varepsilon _{3}} \int _{0}^{t} \int _{\Omega } E_{\varvec{\beta }}^{(k)} \vert {\mathbf {f}} \vert ^{2}+c\varepsilon _{3}\int _{0}^{t} \int _{\Omega } E_{\varvec{\beta }}^{(k)} \vert \nabla {\mathbf {u}} \vert ^{2}, \nonumber \\ \int _{0}^{t} \int _{\Omega } {\mathbf {f}} \cdot {\mathbf {Z}}^{(k)}\mathrm{d}x\mathrm{d}\tau= & {} \int _{0}^{t} \int _{\Omega } E_{\varvec{\beta }}^{(k)}{\mathbf {f}} \cdot E_{-\varvec{\beta }}^{(k)}{\mathbf {Z}}^{(k)} \nonumber \\\le & {} \frac{c}{\varepsilon _{3}} \int _{0}^{t} \int _{\Omega } E_{\varvec{\beta }}^{(k)} \vert {\mathbf {f}} \vert ^{2}+c \varepsilon _{3} \int _{0}^{t} \int _{\Omega } E_{\varvec{\beta }}^{(k)} \vert \nabla {\mathbf {u}} \vert ^{2}, \end{aligned}$$
(A.4)

and

$$\begin{aligned} \begin{aligned} \int _{0}^{t} \int _{\Omega } \nabla {\mathbf {w}}\cdot \nabla E_{\varvec{\beta }}^{(k)}{\mathbf {w}}\mathrm{d}x\mathrm{d}\tau&\le c \gamma _{*} \left( \int _{0}^{t} \int _{\Omega } E_{\varvec{\beta }}^{(k)} \vert \nabla {\mathbf {w}} \vert ^{2} \right) ^{1/2} \left( \int _{0}^{t} \int _{\Omega } E_{\varvec{\beta }}^{(k)} \vert \nabla {\mathbf {w}} \vert ^{2} \right) ^{1/2}\\&\le c \gamma _{*} \int _{0}^{t} \int _{\Omega } E_{\varvec{\beta }}^{(k)} \vert \nabla {\mathbf {w}} \vert ^{2},\\ \int _{0}^{t} \int _{\Omega } \text{ div } {\mathbf {w}} \nabla E_{\varvec{\beta }}^{(k)} \cdot {\mathbf {w}}\mathrm{d}x\mathrm{d}\tau&\le c \gamma _{*} \left( \int _{0}^{t} \int _{\Omega } E_{\varvec{\beta }}^{(k)} (\text{ div } {\mathbf {w}})^{2} \right) ^{1/2} \left( \int _{0}^{t} \int _{\Omega } E_{\varvec{\beta }}^{(k)} \vert \nabla {\mathbf {w}} \vert ^{2} \right) ^{1/2}\\&\le c \gamma _{*} \int _{0}^{t} \int _{\Omega } E_{\varvec{\beta }}^{(k)} \vert \nabla {\mathbf {w}} \vert ^{2},\\ \int _{0}^{t} \int _{\Omega } \text{ rot } {\mathbf {u}} \cdot (E_{\varvec{\beta }}^{(k)} {\mathbf {w}})\mathrm{d}x\mathrm{d}\tau&\le \int _{0}^{t} \int _{\Omega } \vert E_{\varvec{\beta }}^{(k)}]^{1/2} {\mathbf {w}} \cdot \vert E_{\varvec{\beta }}^{(k)}]^{1/2} \text{ rot } {\mathbf {u}} \\&\le \frac{1}{2\varepsilon _{2}}\int _{0}^{t} \int _{\Omega } E_{\varvec{\beta }}^{(k)} \vert {\mathbf {w}} \vert ^{2}+\frac{\varepsilon _{2}}{2} \int _{0}^{t} \int _{\Omega } E_{\varvec{\beta }}^{(k)} \vert \nabla {\mathbf {u}} \vert ^{2}, \\ \int _{0}^{t} \int _{\Omega } {\mathbf {g}} \cdot E_{\varvec{\beta }}^{(k)} {\mathbf {w}}\mathrm{d}x\mathrm{d}\tau&\le \frac{c}{\varepsilon _{3}} \int _{0}^{t} \int _{\Omega } E_{\varvec{\beta }}^{(k)} \vert {\mathbf {g}} \vert ^{2}+c\varepsilon _{3} \int _{0}^{t} \int _{\Omega } E_{\varvec{\beta }}^{(k)} \vert \nabla {\mathbf {w}} \vert ^{2}. \end{aligned}\nonumber \\ \end{aligned}$$
(A.5)

Now, applying estimates (A.4)–(A.5) into (A.3) and taking \(\varepsilon _{1}\) and \(\varepsilon _{2}\) small enough, we obtain:

$$\begin{aligned} \begin{aligned}&\int _{\Omega } E_{\varvec{\beta }}^{(k)} \vert {\mathbf {u}} \vert ^{2}\mathrm{d}x+\ \int _{\Omega } E_{\varvec{\beta }}^{(k)} \vert {\mathbf {w}} \vert ^{2}\mathrm{d}x+ \int _{0}^{t} \int _{\Omega } E_{\varvec{\beta }}^{(k)} \vert \nabla {\mathbf {u}} \vert ^{2}\mathrm{d}x\mathrm{d}\tau \\&\qquad + \int _{0}^{t} \int _{\Omega } E_{\varvec{\beta }}^{(k)} \vert \nabla {\mathbf {w}} \vert ^{2}\mathrm{d}x\mathrm{d}\tau +\int _{0}^{t} \int _{\Omega } E_{\varvec{\beta }}^{(k)} (\text{ div } {\mathbf {w}})^{2}\mathrm{d}x\mathrm{d}\tau +\int _{0}^{t} \int _{\Omega } E_{\varvec{\beta }}^{(k)} \vert {\mathbf {w}} \vert ^{2}\mathrm{d}x\mathrm{d}\tau \\&\quad \le c \int _{\Omega } E_{\varvec{\beta }}^{(k)} \vert {\mathbf {a}} \vert ^{2}\mathrm{d}x+c \int _{\Omega } E_{\varvec{\beta }}^{(k)} \vert {\mathbf {b}} \vert ^{2}\mathrm{d}x +c(\varepsilon _{3}+\gamma _{*}) \int _{0}^{t} \int _{\Omega } E_{\varvec{\beta }}^{(k)} \vert \nabla {\mathbf {u}} \vert ^{2}+c(\varepsilon _{3}+\gamma _{*})\\&\qquad \int _{0}^{t} \int _{\Omega } E_{\varvec{\beta }}^{(k)} \vert \nabla {\mathbf {w}} \vert ^{2}+c\gamma _{*} \int _{0}^{t} \int _{\Omega } E_{\varvec{\beta }}^{(k)} \vert {\mathbf {u}}_{\tau } \vert ^{2}+c\gamma _{*} \int _{0}^{t} \int _{\Omega } E_{\varvec{\beta }}^{(k)} \vert {\mathbf {w}}_{\tau } \vert ^{2} \\&\qquad +\frac{c}{\varepsilon _{3}} \int _{0}^{t} \int _{\Omega } E_{\varvec{\beta }}^{(k)} \vert {\mathbf {f}} \vert ^{2}+\frac{c}{\varepsilon _{3}} \int _{0}^{t} \int _{\Omega } E_{\varvec{\beta }}^{(k)} \vert {\mathbf {g}} \vert ^{2}+c\int _{0}^{t} \int _{\Omega } E_{\varvec{\beta }}^{(k)}\vert {\mathbf {u}} \vert ^{2}+c\int _{0}^{t} \int _{\Omega } E_{\varvec{\beta }}^{(k)}\vert {\mathbf {w}} \vert ^{2}. \end{aligned}\nonumber \\ \end{aligned}$$
(A.6)

Step 2 We now take in the integral identity (5.2) the test functions \(\varvec{\varphi }(x,t)=E_{\varvec{\beta }}^{(k)}(x){\mathbf {u}}_{t}(x,t)+{\mathbf {Z}}_{t}^{(k)}(x,t)\), \(\varvec{\psi }(x,t)=E_{\varvec{\beta }}^{(k)}(x){\mathbf {w}}_{t}(x,t)\) to obtain:

$$\begin{aligned} \begin{aligned}&\int _{0}^{t} \int _{\Omega } E_{\varvec{\beta }}^{(k)} \vert {\mathbf {u}}_{\tau } \vert ^{2}+\int _{0}^{t} \int _{\Omega } {\mathbf {u}}_{\tau } \cdot {\mathbf {Z}}_{\tau }^{(k)}+\mu \int _{0}^{t} \int _{\Omega } \nabla {\mathbf {u}}\cdot \nabla (E_{\varvec{\beta }}^{(k)} {\mathbf {u}}_{\tau }+{\mathbf {Z}}_{\tau }^{(k)})\\&\quad =a \int _{0}^{t} \int _{\Omega } \text{ rot } {\mathbf {w}} \cdot (E_{\varvec{\beta }}^{(k)} {\mathbf {u}}_{\tau }+{\mathbf {Z}}_{\tau }^{(k)})+\int _{0}^{t} \int _{\Omega } {\mathbf {f}} \cdot (E_{\varvec{\beta }}^{(k)} {\mathbf {u}}_{\tau }+{\mathbf {Z}}_{\tau }^{(k)})\\&\qquad \int _{0}^{t} \int _{\Omega } E_{\varvec{\beta }}^{(k)} \vert {\mathbf {w}}_{\tau } \vert ^{2}+\alpha \int _{0}^{t} \int _{\Omega } \nabla {\mathbf {w}} \cdot \nabla (E_{\varvec{\beta }}^{(k)}{\mathbf {w}}_{\tau })+\beta \int _{0}^{t} \int _{\Omega } \text{ div } {\mathbf {w}} \text{ div }( E_{\varvec{\beta }}^{(k)} {\mathbf {w}}_{\tau })\\&\qquad +2a \int _{0}^{t} \int _{\Omega } {\mathbf {w}} \cdot (E_{\varvec{\beta }}^{(k)} {\mathbf {w}}_{\tau })=a \int _{0}^{t} \int _{\Omega } \text{ rot } {\mathbf {u}} \cdot (E_{\varvec{\beta }}^{(k)} {\mathbf {w}}_{\tau })+\int _{0}^{t} \int _{\Omega } {\mathbf {g}} \cdot (E_{\varvec{\beta }}^{(k)}{\mathbf {w}}_{\tau }). \end{aligned}\nonumber \\ \end{aligned}$$
(A.7)

Rewriting the system of Eq. (A.7) yields:

$$\begin{aligned} \begin{aligned}&\int _{0}^{t} \int _{\Omega } E_{\varvec{\beta }}^{(k)} \vert {\mathbf {u}}_{\tau } \vert ^{2}+\frac{\mu }{2} \int _{\Omega } E_{\varvec{\beta }}^{(k)} \vert \nabla {\mathbf {u}} \vert ^{2}\\&\quad =\frac{\mu }{2} \int _{\Omega } E_{\varvec{\beta }}^{(k)} \vert \nabla {\mathbf {a}} \vert ^{2}-\int _{0}^{t} \int _{\Omega } {\mathbf {u}}_{\tau } \cdot {\mathbf {Z}}_{\tau }^{(k)}-\mu \int _{0}^{t} \int _{\Omega } \nabla {\mathbf {u}} \cdot (\nabla E_{\varvec{\beta }}^{(k)} {\mathbf {u}}_{\tau }) \\&\qquad -\mu \int _{0}^{t} \int _{\Omega } \nabla {\mathbf {u}}\cdot \nabla {\mathbf {Z}}_{\tau }^{(k)}+a \int _{0}^{t} \int _{\Omega } \text{ rot } {\mathbf {w}} \cdot E_{\varvec{\beta }}^{(k)} {\mathbf {u}}_{\tau }\\&\qquad +a \int _{0}^{t} \int _{\Omega } \text{ rot } {\mathbf {w}} \cdot {\mathbf {Z}}_{\tau }^{(k)}+\int _{0}^{t} \int _{\Omega } {\mathbf {f}} \cdot E_{\varvec{\beta }}^{(k)} {\mathbf {u}}_{\tau }+\int _{0}^{t} \int _{\Omega } {\mathbf {f}} \cdot {\mathbf {Z}}_{\tau }^{(k)} \\&\qquad \int _{0}^{t} \int _{\Omega } E_{\varvec{\beta }}^{(k)} \vert {\mathbf {w}}_{\tau } \vert ^{2}+\frac{\alpha }{2} \int _{\Omega } E_{\varvec{\beta }}^{(k)} \vert \nabla {\mathbf {w}} \vert ^{2}+\frac{\beta }{2}\int _{\Omega } E_{\varvec{\beta }}^{(k)} (\text{ div } {\mathbf {w}})^{2}\\&\qquad +a\int _{\Omega } E_{\varvec{\beta }}^{(k)} \vert {\mathbf {w}} \vert ^{2}=\frac{\alpha }{2}\int _{\Omega } E_{\varvec{\beta }}^{(k)} \vert \nabla {\mathbf {b}} \vert ^{2}+\frac{\beta }{2} \int _{\Omega } E_{\varvec{\beta }}^{(k)} (\text{ div } {\mathbf {b}})^{2} \\&\qquad +a \int _{\Omega } E_{\varvec{\beta }}^{(k)} \vert {\mathbf {b}} \vert ^{2}-\alpha \int _{0}^{t} \int _{\Omega } \nabla {\mathbf {w}}\cdot (\nabla E_{\varvec{\beta }}^{(k)} {\mathbf {w}}_{\tau })-\beta \int _{\Omega } \text{ div } {\mathbf {w}} \nabla E_{\varvec{\beta }}^{(k)} {\mathbf {w}}_{\tau } \\&\qquad +a \int _{0}^{t} \int _{\Omega } \text{ rot } {\mathbf {u}} \cdot E_{\varvec{\beta }}^{(k)} {\mathbf {w}}_{\tau }+\int _{0}^{t} \int _{\Omega } {\mathbf {g}} \cdot E_{\varvec{\beta }}^{(k)} {\mathbf {w}}_{\tau }. \end{aligned}\nonumber \\ \end{aligned}$$
(A.8)

Estimating the right-hand of (A.8) in a similar manner as in Step 1 yields:

$$\begin{aligned} \begin{aligned}&\int _{0}^{t} \int _{\Omega } E_{\varvec{\beta }}^{(k)} \vert {\mathbf {u}}_{\tau } \vert ^{2}+\int _{0}^{t} \int _{\Omega } E_{\varvec{\beta }}^{(k)} \vert {\mathbf {w}}_{\tau } \vert ^{2}+\int _{\Omega } E_{\varvec{\beta }}^{(k)} \vert \nabla {\mathbf {u}} \vert ^{2}+\int _{\Omega } E_{\varvec{\beta }}^{(k)} \vert \nabla {\mathbf {w}} \vert ^{2} \\&\quad +\int _{\Omega } E_{\varvec{\beta }}^{(k)} (\text{ div } {\mathbf {w}})^{2}+\int _{\Omega } E_{\varvec{\beta }}^{(k)} \vert {\mathbf {w}} \vert ^{2} \le c\int _{\Omega } E_{\varvec{\beta }}^{(k)} \vert \nabla {\mathbf {a}} \vert ^{2}+c \int _{\Omega } E_{\varvec{\beta }}^{(k)} \vert \nabla {\mathbf {b}} \vert ^{2} \\&\quad +c(\gamma _{*}+\varepsilon _{3})\int _{0}^{t} \int _{\Omega } E_{\varvec{\beta }}^{(k)} \vert {\mathbf {u}}_{\tau } \vert ^{2}+c\gamma _{*} \int _{0}^{t} \int _{\Omega } E_{\varvec{\beta }}^{(k)} \vert \nabla {\mathbf {u}} \vert ^{2}+c(\gamma _{*}+\varepsilon _{3})\int _{0}^{t} \int _{\Omega } E_{\varvec{\beta }}^{(k)} \vert {\mathbf {w}}_{\tau } \vert ^{2} \\&\quad +c\gamma _{*} \int _{0}^{t} \int _{\Omega } E_{\varvec{\beta }}^{(k)} \vert \nabla {\mathbf {w}} \vert ^{2}+c\int _{0}^{t} \int _{\Omega } E_{\varvec{\beta }}^{(k)}\vert \nabla {\mathbf {u}} \vert ^{2} +c\int _{0}^{t} \int _{\Omega } E_{\varvec{\beta }}^{(k)}\vert \nabla {\mathbf {w}} \vert ^{2} \\&\quad +\frac{c}{\varepsilon _{3}}\int _{0}^{t} \int _{\Omega } E_{\varvec{\beta }}^{(k)}\vert {\mathbf {f}} \vert ^{2}+\frac{c}{\varepsilon _{3}}\int _{0}^{t} \int _{\Omega } E_{\varvec{\beta }}^{(k)}\vert {\mathbf {g}} \vert ^{2}. \end{aligned}\nonumber \\ \end{aligned}$$
(A.9)

Step 3 Summing the obtained inequalities (A.6) and (A.9) yields:

$$\begin{aligned} \begin{aligned}&\int _{\Omega } E_{\varvec{\beta }}^{(k)}(\vert {\mathbf {u}} \vert ^{2}+\vert \nabla {\mathbf {u}} \vert ^{2})+\int _{\Omega } E_{\varvec{\beta }}^{(k)}(\vert {\mathbf {w}} \vert ^{2}+\vert \nabla {\mathbf {w}} \vert ^{2})\\&\qquad +\int _{0}^{t} \int _{\Omega } E_{\beta }^{(k)} (\vert {\mathbf {u}}_{\tau } \vert ^{2}+\vert \nabla {\mathbf {u}} \vert ^{2})+\int _{0}^{t} \int _{\Omega } E_{\beta }^{(k)} (\vert {\mathbf {w}}_{\tau } \vert ^{2}+\vert \nabla {\mathbf {w}} \vert ^{2})\\&\qquad +\int _{0}^{t} \int _{\Omega } E_{\varvec{\beta }}^{(k)}((\text{ div } {\mathbf {w}})^{2}+\vert {\mathbf {w}} \vert ^{2})+\int _{\Omega }E_{\varvec{\beta }}^{(k)}((\text{ div } {\mathbf {w}})^{2}+\vert {\mathbf {w}} \vert ^{2}) \\&\quad \le c(\gamma _{*}+\varepsilon _{3}) \int _{0}^{t} \int _{\Omega } E_{\varvec{\beta }}^{(k)} (\vert {\mathbf {u}}_{\tau } \vert ^{2}+\vert \nabla {\mathbf {u}} \vert ^{2})+c(\gamma _{*}+\varepsilon _{3}) \int _{0}^{t} \int _{\Omega } E_{\varvec{\beta }}^{(k)} (\vert {\mathbf {w}}_{\tau } \vert ^{2}+\vert \nabla {\mathbf {w}} \vert ^{2}) \\&\qquad +c\int _{\Omega } E_{\varvec{\beta }}^{(k)}(\vert {\mathbf {a}} \vert ^{2}+\vert \nabla {\mathbf {a}} \vert ^{2})+c\int _{\Omega } E_{\varvec{\beta }}^{(k)}(\vert {\mathbf {b}} \vert ^{2}+\vert \nabla {\mathbf {b}} \vert ^{2})+\frac{c}{\varepsilon _{3}} \int _{0}^{t} \int _{\Omega } E_{\varvec{\beta }}^{(k)}(\vert {\mathbf {f}} \vert ^{2}+\vert {\mathbf {g}} \vert ^{2})\\&\qquad +c \int _{0}^{t} \int _{\Omega } E_{\varvec{\beta }}^{(k)}\vert {\mathbf {u}} \vert ^{2}+c \int _{0}^{t} \int _{\Omega } E_{\varvec{\beta }}^{(k)}\vert {\mathbf {w}} \vert ^{2}+c \int _{0}^{t} \int _{\Omega } E_{\varvec{\beta }}^{(k)}\vert \nabla {\mathbf {u}} \vert ^{2}+c \int _{0}^{t} \int _{\Omega } E_{\varvec{\beta }}^{(k)}\vert \nabla {\mathbf {w}} \vert ^{2}. \end{aligned}\nonumber \\ \end{aligned}$$
(A.10)

Taking \(\varepsilon _{3}\) and \(\gamma _{*}\) sufficiently small in (A.10) and using Gronwall’s inequality, we obtain:

$$\begin{aligned} \begin{aligned}&\int _{\Omega } E_{\beta }^{(k)}(\vert {\mathbf {u}} \vert ^{2}+ \vert \nabla {\mathbf {u}} \vert ^{2})+\int _{\Omega } E_{\beta }^{(k)}(\vert {\mathbf {w}} \vert ^{2}+ \vert \nabla {\mathbf {w}} \vert ^{2}) \\&\qquad +\int _{0}^{t} \int _{\Omega } E_{\varvec{\beta }}^{(k)}(\vert {\mathbf {u}}_{\tau } \vert ^{2}+ \vert \nabla {\mathbf {u}} \vert ^{2})+\int _{0}^{t} \int _{\Omega } E_{\varvec{\beta }}^{(k)}(\vert {\mathbf {w}}_{\tau } \vert ^{2}+ \vert \nabla {\mathbf {w}} \vert ^{2}) \\&\quad \le c(\vert \vert {\mathbf {a}} \vert \vert _{{\mathcal {W}}_{2,\varvec{\beta }}^{1}(\Omega )}+\vert \vert {\mathbf {b}} \vert \vert _{{\mathcal {W}}_{2,\varvec{\beta }}^{1}(\Omega )}+\vert \vert {\mathbf {f}} \vert \vert _{{\mathcal {L}}_{2,\varvec{\beta }}(\Omega ^{T})}+\vert \vert {\mathbf {g}} \vert \vert _{{\mathcal {L}}_{2,\varvec{\beta }}(\Omega ^{T})}). \end{aligned}\nonumber \\ \end{aligned}$$
(A.11)

Finally, passing to the limit \(k \rightarrow \infty \) in (A.11), we obtain (right-hand side does not depend on k):

$$\begin{aligned} \begin{aligned}&\sup _{t \in [0,T]}\vert \vert {\mathbf {u}}(\cdot ,t) \vert \vert _{{\mathcal {W}}_{2,\varvec{\beta }}^{1}(\Omega )}+\vert \vert {\mathbf {u}} \vert \vert _{{\mathcal {W}}_{2,\varvec{\beta }}^{1,1}(\Omega ^{T})}+\sup _{t \in [0,T]}\vert \vert {\mathbf {w}}(\cdot ,t) \vert \vert _{{\mathcal {W}}_{2,\varvec{\beta }}^{1}(\Omega )}+\vert \vert {\mathbf {w}} \vert \vert _{{\mathcal {W}}_{2,\varvec{\beta }}^{1,1}(\Omega ^{T})} \\&\quad \le c(\vert \vert {\mathbf {a}} \vert \vert _{{\mathcal {W}}_{2,\varvec{\beta }}^{1}(\Omega )}+\vert \vert {\mathbf {b}} \vert \vert _{{\mathcal {W}}_{2,\varvec{\beta }}^{1}(\Omega )}+\vert \vert {\mathbf {f}} \vert \vert _{{\mathcal {L}}_{2,\varvec{\beta }}(\Omega ^{T})}+\vert \vert {\mathbf {g}} \vert \vert _{{\mathcal {L}}_{2,\varvec{\beta }}(\Omega ^{T})}). \end{aligned}\nonumber \\ \end{aligned}$$
(A.12)

It is important to note that assuming \(\frac{2\nu _{r}^{2}(\alpha +4c_{p})}{\alpha }<\frac{\mu }{2}\) and \(\nu _{r}^{2}< \frac{\alpha }{8}\), we can derive the above inequality (A.12) without using Gronwall’s inequality and thus obtain that the constant c is independent of T.

Step 4 Higher regularity.

For almost all \(t \in [0,T]\), there holds the identity:

We can thus consider as a weak solution of the following stationary problem:

$$\begin{aligned} \begin{aligned}&-\mu \Delta {\mathbf {u}}(x,t)+\nabla p(x,t)=a\text{ rot } {\mathbf {w}}(x,t)+{\mathbf {f}}(x,t)-{\mathbf {u}}_{t}(\cdot ,t), \\&\text{ div } {\mathbf {u}}(x,t)=0, \\&-\alpha \Delta {\mathbf {w}}(x,t)-\beta \nabla \text{ div } {\mathbf {w}}(x,t)=a\text{ rot } {\mathbf {u}}(x,t)+{\mathbf {g}}(x,t)-2a {\mathbf {w}}(x,t)-{\mathbf {w}}_{t}(x,t), \\&{\mathbf {u}}(x,t)\vert _{\partial \Omega }=0,\quad {\mathbf {w}}(x,t)\vert _{\partial \Omega }=0, \\&\int _{\sigma _{j}} {\mathbf {u}}(x,t) \cdot {\mathbf {n}}(x)\mathrm{d}x^{(j)'}=0, \qquad j=1,\dots ,m. \end{aligned} \end{aligned}$$

Since we have \(a\text{ rot } {\mathbf {w}}(\cdot ,t)+{\mathbf {f}}(\cdot ,t)-{\mathbf {u}}_{t}(\cdot ,t) \in {\mathcal {L}}_{2,\varvec{\beta }}(\Omega )\), \(a\text{ rot } {\mathbf {u}}(\cdot ,t)+{\mathbf {g}}(\cdot ,t)-2a{\mathbf {w}}(\cdot ,t)-{\mathbf {w}}_{t}(\cdot ,t) \in {\mathcal {L}}_{2,\varvec{\beta }}(\Omega )\), \(\partial \Omega \in C^{2}\), assuming that \(\gamma _{*}\) is sufficiently small and using estimates (A.12), we obtain the following:

$$\begin{aligned}&\vert \vert {\mathbf {u}} \vert \vert _{{\mathcal {W}}_{2,\varvec{\beta }}^{2,1}(\Omega ^{T})}+\vert \vert {\mathbf {w}} \vert \vert _{{\mathcal {W}}_{2,\varvec{\beta }}^{2,1}(\Omega ^{T})}+\vert \vert \nabla p \vert \vert _{{\mathcal {L}}_{2,\varvec{\beta }}(\Omega ^{T})} \le c(\vert \vert {\mathbf {a}} \vert \vert _{{\mathcal {W}}_{2,\varvec{\beta }}^{1}(\Omega )}^{2}\nonumber \\&\quad +\vert \vert {\mathbf {b}} \vert \vert _{{\mathcal {W}}_{2,\varvec{\beta }}^{1}(\Omega )}^{2}+\vert \vert {\mathbf {f}} \vert \vert _{{\mathcal {L}}_{2,\varvec{\beta }}(\Omega ^{T})}+\vert \vert {\mathbf {g}} \vert \vert _{{\mathcal {L}}_{2,\varvec{\beta }}(\Omega ^{T})}). \end{aligned}$$
(A.13)

As in Step 3, assuming \(\frac{2\nu _{r}^{2}(\alpha +4c_{p})}{\alpha }<\frac{\mu }{2}\) and \(\nu _{r}^{2}< \frac{\alpha }{8}\), we can derive the above inequality (A.13) without using Gronwall’s inequality and thus obtain that the constant c is independent of T.

Proof of Theorem 5.3

We seek the solution \(({\mathbf {u}}(x,t),{\mathbf {w}}(x,t),p(x,t))\) of problem:

$$\begin{aligned} \begin{aligned}&\frac{\partial {\mathbf {u}}(x,t)}{\partial t}-\mu \Delta {\mathbf {u}}(x,t)+\nabla p(x,t)=a \text{ rot } {\mathbf {w}}(x,t)+{\mathbf {f}}(x,t), \\&\text{ div }\ {\mathbf {u}}(x,t)=0, \\&\frac{\partial {\mathbf {w}}(x,t)}{\partial t}-\alpha \Delta {\mathbf {w}}(x,t)-\beta \nabla \text{ div } {\mathbf {w}}(x,t)+2a {\mathbf {w}}(x,t)=a \text{ rot } {\mathbf {u}}(x,t)+{\mathbf {g}}(x,t), \\&{\mathbf {u}}, {\mathbf {w}}=0\ \text{ on }\ \partial \Omega , \\&{\mathbf {u}}(x,0)={\mathbf {a}}(x),\quad {\mathbf {w}}(x,0)={\mathbf {b}}(x), \\&\int _{\sigma _{j}} {\mathbf {u}}(x,t) \cdot {\mathbf {n}}(x)\mathrm{d}x^{(j)'}=F_{j}(t),\ j=1,\dots ,m, \end{aligned} \end{aligned}$$

in the form:

$$\begin{aligned} \begin{aligned} {\mathbf {u}}(x,t)&={\mathbf {v}}(x,t)+{\mathbf {V}}(x,t)={\mathbf {v}}(x,t)+{\mathbf {U}}(x,t)+{\mathbf {Z}}(x,t) \\&={\mathbf {v}}(x,t)+\sum _{j=1}^{m} \zeta (x_{1}^{(j)}){\mathbf {U}}^{(j)} (x^{(j)'},t)+{\mathbf {Z}}(x,t)\\&={\mathbf {v}}(x,t)+\sum _{j=1}^{m} \zeta (x_{1}^{(j)})(U_{1}^{(j)}(x^{(j)'},t),0,0)+{\mathbf {Z}}(x,t), \\ {\mathbf {w}}(x,t)&={\mathbf {w}}_{\mathrm{int}}(x,t)+{\mathbf {W}}(x,t)={\mathbf {w}}_{\mathrm{int}}(x,t)+\sum _{j=1}^{m} \zeta (x_{1}^{(j)}){\mathbf {W}}^{(j)}(x^{(j)'},t) \\&={\mathbf {w}}_{\mathrm{int}}(x,t)+\sum _{j=1}^{m} \zeta (x_{1}^{(j)})(0,W_{2}^{(j)}(x^{(j)'},t),W_{3}^{(j)}(x^{(j)'},t)), \\ p(x,t)&={\tilde{p}}(x,t)+P(x,t)={\tilde{p}}(x,t)+\sum _{j=1}^{m} \zeta (x_{1}^{(j)})P^{(j)}(x^{(j)},t)\\&={\tilde{p}}(x,t)+\sum _{j=1}^{m}\zeta (x_{1}^{(j)})(-q^{(j)}(t)x_{1}^{(j)}+p_{0}^{(j)}(t)). \end{aligned} \end{aligned}$$

Now, for \(({\mathbf {v}}(x,t),{\mathbf {w}}_{\mathrm{int}}(x,t),{\tilde{p}}(x,t))\), we get the problem:

$$\begin{aligned} \begin{aligned}&\frac{\partial {\mathbf {v}}(x,t)}{\partial t}-\mu \Delta {\mathbf {v}}(x,t)+\nabla {\tilde{p}}(x,t)=a\text{ rot } {\mathbf {w}}_{\mathrm{int}}+\tilde{{\mathbf {f}}}(x,t),\\&\text{ div } {\mathbf {v}}(x,t)=0, \end{aligned} \end{aligned}$$

and

$$\begin{aligned} \begin{aligned}&\frac{\partial {\mathbf {w}}_{\mathrm{int}}(x,t)}{\partial t}-\alpha \Delta {\mathbf {w}}_{\mathrm{int}}(x,t)-\beta \nabla \text{ div } {\mathbf {w}}_{\mathrm{int}}(x,t)+2a {\mathbf {w}}_{\mathrm{int}}=a \text{ rot } {\mathbf {v}}(x,t)+\tilde{{\mathbf {g}}}(x,t), \end{aligned} \end{aligned}$$

with the right-hand sides \(\tilde{{\mathbf {f}}}(x,t)=\hat{{\mathbf {f}}}(x,t)+{\mathbf {f}}_{(1)}(x,t)+{\mathbf {f}}_{(2)}(x,t)\), where:

$$\begin{aligned} \begin{aligned}&{\mathbf {f}}_{(1)}(x,t)=\mu \sum _{j=1}^{m} \zeta ''(x_{1}^{(j)}) \left( U_{1}^{(j)}(x^{(j)'},t),0,0 \right) \\&\quad -\sum _{j=1}^{m} \zeta '(x_{1}^{(j)}) \left( -q^{(j)}(t)x_{1}^{(j)}+p_{0}^{(j)}(t),0,0 \right) \\&a \left( 0,-\zeta '(x_{1}^{j)})W_{3}^{(j)}(x^{(j)'},t)),\zeta '(x_{1}^{(j)})W_{2}^{(j)}(x^{(j)'},t) \right) ,\\&{\mathbf {f}}_{(2)}(x,t)=-\frac{\partial {\mathbf {Z}}(x,t)}{\partial t}+\mu \Delta {\mathbf {Z}}(x,t), \end{aligned} \end{aligned}$$

and \(\tilde{{\mathbf {g}}}(x,t)=\hat{{\mathbf {g}}}(x,t)+{\mathbf {g}}_{(1)}(x,t)+{\mathbf {g}}_{(2)}(x,t)\), where:

$$\begin{aligned} \begin{aligned} {\mathbf {g}}_{(1)}(x,t)&=\alpha \sum _{j=1}^{m} \zeta ''(x_{1}^{(j)})(0,W_{2}^{(j)}(x^{(j)'},t),W_{3}^{(j)}(x^{(j)'},t))\\&\quad +\beta \sum _{j=1}^{m} \left( \zeta '(x_{1}^{(j)}) \left( \frac{\partial W_{2}^{(j)}}{\partial x_{2}^{(j)}}+\frac{\partial W_{3}^{(j)}}{\partial x_{3}^{(j)}} \right) ,0,0 \right) ,\\ {\mathbf {g}}_{(2)}(x,t)&=a \text{ rot } {\mathbf {Z}}(x,t), \end{aligned} \end{aligned}$$

and the new initial data:

$$\begin{aligned} \begin{aligned}&{\mathbf {v}}(x,0):=\tilde{{\mathbf {a}}}(x)=\hat{{\mathbf {a}}}(x)-{\mathbf {Z}}(x,0), \quad {\mathbf {w}}_{\mathrm{int}}(x,0):=\tilde{{\mathbf {b}}}(x)=\hat{{\mathbf {b}}}(x). \end{aligned} \end{aligned}$$

Due to the fact that \(\text{ supp }_{x} {\mathbf {Z}}(x,t) \subset {\overline{\Omega }}_{(3)}\), we now easily obtain:

$$\begin{aligned} \begin{aligned}&\text {supp}_{x}({\mathbf {f}}_{(1)}(x,t)+{\mathbf {f}}_{(2)}(x,t)) \subset {\overline{\Omega }}_{(3)}, \\&\text {supp}_{x}({\mathbf {g}}_{(1)}(x,t)+{\mathbf {g}}_{2}(x,t)) \subset {\overline{\Omega }}_{(3)}. \end{aligned} \end{aligned}$$

It now follows that:

$$\begin{aligned} \begin{aligned}&\vert \vert {\mathbf {f}}_{(1)}+{\mathbf {f}}_{(2)} \vert \vert _{{\mathcal {L}}_{2,\varvec{\beta }}(\Omega ^{T})}+\vert \vert {\mathbf {g}}_{(1)}+{\mathbf {g}}_{(2)} \vert \vert _{{\mathcal {L}}_{2,\varvec{\beta }}(\Omega ^{T})} \\&\quad \le c(\vert \vert {\mathbf {f}}_{(1)}+{\mathbf {f}}_{(2)} \vert \vert _{L_{2}(\Omega ^{T})}+\vert \vert {\mathbf {g}}_{(1)}+{\mathbf {g}}_{(2)} \vert \vert _{L_{2}(\Omega ^{T})})\\&\quad \le c \sum _{j=1}^{m}( \vert \vert a_{1}^{(j)} \vert \vert _{W_{2}^{1}(\sigma _{j})}+\vert \vert {\mathbf {b}}^{(j)'} \vert \vert _{W_{2}^{1}(\sigma _{j})}+\vert \vert f_{1}^{(j)} \vert \vert _{L_{2}(\Sigma _{j}^{T})}\\&\qquad +\vert \vert {\mathbf {g}}^{(j)'} \vert \vert _{L_{2}(\Sigma _{j}^{T})}+\vert \vert F_{j} \vert \vert _{W_{2}^{1}(\langle 0,T \rangle )}). \end{aligned} \end{aligned}$$

Furthermore, there hold the conditions:

$$\begin{aligned} \text{ div } \tilde{{\mathbf {a}}}(x)=\text{ div } \hat{{\mathbf {a}}}(x)+\sum _{j=1}^{m} \zeta '(x_{1}^{(j)})a_{1}^{(j)}(x^{(j)'})=0, \end{aligned}$$

and

$$\begin{aligned} \int _{\sigma _{j}} \tilde{{\mathbf {a}}}(x) \cdot {\mathbf {n}}(x)\mathrm{d}x^{(j)'}=0,\quad j=1,\dots ,m, \end{aligned}$$

with \(\tilde{{\mathbf {a}}}(x)\vert _{\partial \Omega }=0\). Therefore, from Theorem 5.2, we conclude that there exists a unique solution \(({\mathbf {v}}(x,t),{\mathbf {w}}_{\mathrm{int}}(x,t),{\tilde{p}}(x,t))\) of problem (5.1) with the right-hand sides \(\tilde{{\mathbf {f}}}(x,t)\), \(\tilde{{\mathbf {g}}}(x,t)\) and initial data \(\tilde{{\mathbf {a}}}(x)\), \(\tilde{{\mathbf {b}}}(x)\) satisfying estimates:

$$\begin{aligned} \begin{aligned}&\vert \vert {\mathbf {v}} \vert \vert _{{\mathcal {W}}_{2,\varvec{\beta }}^{2,1}(\Omega ^{T})}+\vert \vert {\mathbf {w}}_{\mathrm{int}} \vert \vert _{{\mathcal {W}}_{2,\varvec{\beta }}^{2,1}(\Omega ^{T})}+\vert \vert \nabla {\tilde{p}}\vert \vert _{{\mathcal {L}}_{2,\varvec{\beta }(\Omega ^{T})}}\\&\quad \le c \left( \vert \vert \hat{{\mathbf {a}}} \vert \vert _{{\mathcal {W}}_{2,\varvec{\beta }}^{1}(\Omega )}+\vert \vert \hat{{\mathbf {b}}} \vert \vert _{{\mathcal {W}}_{2,\varvec{\beta }}^{1}(\Omega )}+\vert \vert \hat{{\mathbf {f}}} \vert \vert _{{\mathcal {L}}_{2,\varvec{\beta }}(\Omega ^{T})}+\vert \vert \hat{{\mathbf {g}}} \vert \vert _{{\mathcal {L}}_{2,\varvec{\beta }}(\Omega ^{T})} \right) \\&\qquad +c\sum _{j=1}^{m}\left( \vert \vert a_{1}^{(j)} \vert \vert _{W_{2}^{1}(\sigma _{j})}+\vert \vert {\mathbf {b}}^{(j)'} \vert \vert _{W_{2}^{1}(\sigma _{j})}+\vert \vert f_{1}^{(j)} \vert \vert _{L_{2}(\Sigma _{j}^{T})}\right. \\&\qquad \left. +\vert \vert {\mathbf {g}}^{(j)'} \vert \vert _{L_{2}(\Sigma _{j}^{T})}+\vert \vert F_{j} \vert \vert _{W_{2}^{1}(\langle 0,T \rangle )}\right) . \end{aligned} \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beneš, M., Pažanin, I. & Radulović, M. Leray’s Problem for the Nonstationary Micropolar Fluid Flow. Mediterr. J. Math. 17, 50 (2020). https://doi.org/10.1007/s00009-020-1493-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00009-020-1493-9

Keywords

Mathematics Subject Classification

Navigation