Skip to main content

Advertisement

Log in

Targeting the pathways of regulated necrosis: a potential strategy for alleviation of cardio-cerebrovascular injury

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Apoptosis, necrosis and autophagy-dependent cell death are the three major types of cell death. Traditionally, necrosis is thought as a passive and unregulated form of cell death. However, certain necrosis can also occur in a highly regulated manner, referring to regulated necrosis. Depending on the signaling pathways, regulated necrosis can be further classified as necroptosis, pyroptosis, ferroptosis, parthanatos and CypD-mediated necrosis. Numerous studies have reported that regulated necrosis contributes to the progression of multiple injury-relevant diseases. For example, necroptosis contributes to the development of myocardial infarction, atherosclerosis, heart failure and stroke; pyroptosis is involved in the progression of myocardial or cerebral infarction, atherosclerosis and diabetic cardiomyopathy; while ferroptosis, parthanatos and CypD-mediated necrosis participate in the pathological process of myocardial and/or cerebral ischemia/reperfusion injury. Thereby, targeting the pathways of regulated necrosis pharmacologically or genetically could be an efficient strategy for reducing cardio-cerebrovascular injury. Further study needs to focus on the crosstalk and interplay among different types of regulated necrosis. Pharmacological intervention of two or more types of regulated necrosis simultaneously may have advantages in clinic to treat injury-relevant diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Grootjans S, Vanden Berghe T, Vandenabeele P (2017) Initiation and execution mechanisms of necroptosis: an overview. Cell Death Differ 24(7):1184–1195. https://doi.org/10.1038/cdd.2017.65

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Holler N, Zaru R, Micheau O, Thome M, Attinger A, Valitutti S, Bodmer JL, Schneider P, Seed B, Tschopp J (2000) Fas triggers an alternative, caspase-8-independent cell death pathway using the kinase RIP as effector molecule. Nat Immunol 1(6):489–495. https://doi.org/10.1038/82732

    Article  CAS  PubMed  Google Scholar 

  3. Cho YS, Challa S, Moquin D, Genga R, Ray TD, Guildford M, Chan FK (2009) Phosphorylation-driven assembly of the RIP1-RIP3 complex regulates programmed necrosis and virus-induced inflammation. Cell 137(6):1112–1123. https://doi.org/10.1016/j.cell.2009.05.037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Murphy JM, Czabotar PE, Hildebrand JM, Lucet IS, Zhang JG, Alvarez-Diaz S, Lewis R, Lalaoui N, Metcalf D, Webb AI, Young SN, Varghese LN, Tannahill GM, Hatchell EC, Majewski IJ, Okamoto T, Dobson RC, Hilton DJ, Babon JJ, Nicola NA, Strasser A, Silke J, Alexander WS (2013) The pseudokinase MLKL mediates necroptosis via a molecular switch mechanism. Immunity 39(3):443–453. https://doi.org/10.1016/j.immuni.2013.06.018

    Article  CAS  PubMed  Google Scholar 

  5. Latz E, Xiao TS, Stutz A (2013) Activation and regulation of the inflammasomes. Nat Rev Immunol 13(6):397–411. https://doi.org/10.1038/nri3452

    Article  CAS  PubMed  Google Scholar 

  6. Lu A, Magupalli VG, Ruan J, Yin Q, Atianand MK, Vos MR, Schroder GF, Fitzgerald KA, Wu H, Egelman EH (2014) Unified polymerization mechanism for the assembly of ASC-dependent inflammasomes. Cell 156(6):1193–1206. https://doi.org/10.1016/j.cell.2014.02.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Shi J, Gao W, Shao F (2017) Pyroptosis: gasdermin-mediated programmed necrotic cell death. Trends Biochem Sci 42(4):245–254. https://doi.org/10.1016/j.tibs.2016.10.004

    Article  CAS  PubMed  Google Scholar 

  8. Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE, Patel DN, Bauer AJ, Cantley AM, Yang WS, Morrison B 3rd, Stockwell BR (2012) Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell 149(5):1060–1072. https://doi.org/10.1016/j.cell.2012.03.042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Yang WS, Kim KJ, Gaschler MM, Patel M, Shchepinov MS, Stockwell BR (2016) Peroxidation of polyunsaturated fatty acids by lipoxygenases drives ferroptosis. Proc Natl Acad Sci USA 113(34):E4966–E4975. https://doi.org/10.1073/pnas.1603244113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Yu SW, Wang H, Poitras MF, Coombs C, Bowers WJ, Federoff HJ, Poirier GG, Dawson TM, Dawson VL (2002) Mediation of poly(ADP-ribose) polymerase-1-dependent cell death by apoptosis-inducing factor. Science 297(5579):259–263. https://doi.org/10.1126/science.1072221

    Article  CAS  PubMed  Google Scholar 

  11. Yu SW, Andrabi SA, Wang H, Kim NS, Poirier GG, Dawson TM, Dawson VL (2006) Apoptosis-inducing factor mediates poly(ADP-ribose) (PAR) polymer-induced cell death. Proc Natl Acad Sci USA 103(48):18314–18319. https://doi.org/10.1073/pnas.0606528103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wang Y, Kim NS, Haince JF, Kang HC, David KK, Andrabi SA, Poirier GG, Dawson VL, Dawson TM (2011) Poly(ADP-ribose) (PAR) binding to apoptosis-inducing factor is critical for PAR polymerase-1-dependent cell death (parthanatos). Sci Signal 4(167):20. https://doi.org/10.1126/scisignal.2000902

    Article  CAS  Google Scholar 

  13. Fatokun AA, Dawson VL, Dawson TM (2014) Parthanatos: mitochondrial-linked mechanisms and therapeutic opportunities. Br J Pharmacol 171(8):2000–2016. https://doi.org/10.1111/bph.12416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Baines CP, Kaiser RA, Purcell NH, Blair NS, Osinska H, Hambleton MA, Brunskill EW, Sayen MR, Gottlieb RA, Dorn GW, Robbins J, Molkentin JD (2005) Loss of cyclophilin D reveals a critical role for mitochondrial permeability transition in cell death. Nature 434(7033):658–662. https://doi.org/10.1038/nature03434

    Article  CAS  PubMed  Google Scholar 

  15. Nakagawa T, Shimizu S, Watanabe T, Yamaguchi O, Otsu K, Yamagata H, Inohara H, Kubo T, Tsujimoto Y (2005) Cyclophilin D-dependent mitochondrial permeability transition regulates some necrotic but not apoptotic cell death. Nature 434(7033):652–658. https://doi.org/10.1038/nature03317

    Article  CAS  PubMed  Google Scholar 

  16. Schinzel AC, Takeuchi O, Huang Z, Fisher JK, Zhou Z, Rubens J, Hetz C, Danial NN, Moskowitz MA, Korsmeyer SJ (2005) Cyclophilin D is a component of mitochondrial permeability transition and mediates neuronal cell death after focal cerebral ischemia. Proc Natl Acad Sci USA 102(34):12005–12010. https://doi.org/10.1073/pnas.0505294102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Vanden Berghe T, Linkermann A, Jouan-Lanhouet S, Walczak H, Vandenabeele P (2014) Regulated necrosis: the expanding network of non-apoptotic cell death pathways. Nat Rev Mol Cell Biol 15(2):135–147. https://doi.org/10.1038/nrm3737

    Article  CAS  PubMed  Google Scholar 

  18. Galluzzi L, Vitale I, Aaronson SA, Abrams JM, Adam D, Agostinis P, Alnemri ES, Altucci L, Amelio I, Andrews DW, Annicchiarico-Petruzzelli M, Antonov AV, Arama E, Baehrecke EH, Barlev NA, Bazan NG, Bernassola F, Bertrand MJM, Bianchi K, Blagosklonny MV, Blomgren K, Borner C, Boya P, Brenner C, Campanella M, Candi E, Carmona-Gutierrez D, Cecconi F, Chan FK, Chandel NS, Cheng EH, Chipuk JE, Cidlowski JA, Ciechanover A, Cohen GM, Conrad M, Cubillos-Ruiz JR, Czabotar PE, D’Angiolella V, Dawson TM, Dawson VL, De Laurenzi V, De Maria R, Debatin KM, DeBerardinis RJ, Deshmukh M, Di Daniele N, Di Virgilio F, Dixit VM, Dixon SJ, Duckett CS, Dynlacht BD, El-Deiry WS, Elrod JW, Fimia GM, Fulda S, Garcia-Saez AJ, Garg AD, Garrido C, Gavathiotis E, Golstein P, Gottlieb E, Green DR, Greene LA, Gronemeyer H, Gross A, Hajnoczky G, Hardwick JM, Harris IS, Hengartner MO, Hetz C, Ichijo H, Jaattela M, Joseph B, Jost PJ, Juin PP, Kaiser WJ, Karin M, Kaufmann T, Kepp O, Kimchi A, Kitsis RN, Klionsky DJ, Knight RA, Kumar S, Lee SW, Lemasters JJ, Levine B, Linkermann A, Lipton SA, Lockshin RA, Lopez-Otin C, Lowe SW, Luedde T, Lugli E, MacFarlane M, Madeo F, Malewicz M, Malorni W, Manic G, Marine JC, Martin SJ, Martinou JC, Medema JP, Mehlen P, Meier P, Melino S, Miao EA, Molkentin JD, Moll UM, Munoz-Pinedo C, Nagata S, Nunez G, Oberst A, Oren M, Overholtzer M, Pagano M, Panaretakis T, Pasparakis M, Penninger JM, Pereira DM, Pervaiz S, Peter ME, Piacentini M, Pinton P, Prehn JHM, Puthalakath H, Rabinovich GA, Rehm M, Rizzuto R, Rodrigues CMP, Rubinsztein DC, Rudel T, Ryan KM, Sayan E, Scorrano L, Shao F, Shi Y, Silke J, Simon HU, Sistigu A, Stockwell BR, Strasser A, Szabadkai G, Tait SWG, Tang D, Tavernarakis N, Thorburn A, Tsujimoto Y, Turk B, Vanden Berghe T, Vandenabeele P, Vander Heiden MG, Villunger A, Virgin HW, Vousden KH, Vucic D, Wagner EF, Walczak H, Wallach D, Wang Y, Wells JA, Wood W, Yuan J, Zakeri Z, Zhivotovsky B, Zitvogel L, Melino G, Kroemer G (2018) Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death Differ 25(3):486–541. https://doi.org/10.1038/s41418-017-0012-4

    Article  PubMed  PubMed Central  Google Scholar 

  19. Del Re DP, Amgalan D, Linkermann A, Liu Q, Kitsis RN (2019) Fundamental mechanisms of regulated cell death and implications for heart disease. Physiol Rev 99(4):1765–1817. https://doi.org/10.1152/physrev.00022.2018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Dmitriev YV, Minasian SM, Demchenko EA, Galagudza MM (2013) Study of cardioprotective effects of necroptosis inhibitors on isolated rat heart subjected to global ischemia-reperfusion. Bull Exp Biol Med 155(2):245–248. https://doi.org/10.1007/s10517-013-2124-2

    Article  CAS  PubMed  Google Scholar 

  21. Yue LJ, Zhu XY, Li RS, Chang HJ, Gong B, Tian CC, Liu C, Xue YX, Zhou Q, Xu TS, Wang DJ (2019) Sallylcysteine sulfoxide (alliin) alleviates myocardial infarction by modulating cardiomyocyte necroptosis and autophagy. Int J Mol Med 44(5):1943–1951. https://doi.org/10.3892/ijmm.2019.4351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Bai J, Wang Q, Qi J, Yu H, Wang C, Wang X, Ren Y, Yang F (2019) Promoting effect of baicalin on nitric oxide production in CMECs via activating the PI3K-AKT-eNOS pathway attenuates myocardial ischemia-reperfusion injury. Phytomedicine 63:153035. https://doi.org/10.1016/j.phymed.2019.153035

    Article  CAS  PubMed  Google Scholar 

  23. Luedde M, Lutz M, Carter N, Sosna J, Jacoby C, Vucur M, Gautheron J, Roderburg C, Borg N, Reisinger F, Hippe HJ, Linkermann A, Wolf MJ, Rose-John S, Lullmann-Rauch R, Adam D, Flogel U, Heikenwalder M, Luedde T, Frey N (2014) RIP3, a kinase promoting necroptotic cell death, mediates adverse remodelling after myocardial infarction. Cardiovasc Res 103(2):206–216. https://doi.org/10.1093/cvr/cvu146

    Article  CAS  PubMed  Google Scholar 

  24. Newton K, Dugger DL, Maltzman A, Greve JM, Hedehus M, Martin-McNulty B, Carano RA, Cao TC, van Bruggen N, Bernstein L, Lee WP, Wu X, DeVoss J, Zhang J, Jeet S, Peng I, McKenzie BS, Roose-Girma M, Caplazi P, Diehl L, Webster JD, Vucic D (2016) RIPK3 deficiency or catalytically inactive RIPK1 provides greater benefit than MLKL deficiency in mouse models of inflammation and tissue injury. Cell Death Differ 23(9):1565–1576. https://doi.org/10.1038/cdd.2016.46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ghardashi Afousi A, Gaeini A, Rakhshan K, Naderi N, Darbandi Azar A, Aboutaleb N (2019) Targeting necroptotic cell death pathway by high-intensity interval training (HIIT) decreases development of post-ischemic adverse remodelling after myocardial ischemia/reperfusion injury. J Cell Commun Signal 13(2):255–267. https://doi.org/10.1007/s12079-018-0481-3

    Article  PubMed  Google Scholar 

  26. She L, Tu H, Zhang YZ, Tang LJ, Li NS, Ma QL, Liu B, Li Q, Luo XJ, Peng J (2019) Inhibition of phosphoglycerate mutase 5 reduces necroptosis in rat hearts following ischemia/reperfusion through suppression of dynamin-related protein 1. Cardiovasc Drugs Ther 33(1):13–23. https://doi.org/10.1007/s10557-018-06848-8

    Article  CAS  PubMed  Google Scholar 

  27. Wang Z, Jiang H, Chen S, Du F, Wang X (2012) The mitochondrial phosphatase PGAM5 functions at the convergence point of multiple necrotic death pathways. Cell 148(1–2):228–243. https://doi.org/10.1016/j.cell.2011.11.030

    Article  CAS  PubMed  Google Scholar 

  28. Kanugula AK, Thodeti CK (2018) AMP-activated kinase “Keaps” ischemia/reperfusion-induced necroptosis under control. Int J Cardiol 259:168–169. https://doi.org/10.1016/j.ijcard.2018.02.053

    Article  PubMed  PubMed Central  Google Scholar 

  29. Wang YS, Yu P, Wang Y, Zhang J, Hang W, Yin ZX, Liu G, Chen J, Werle KD, Quan CS, Gao H, Zeng Q, Cui R, Liang J, Ding Q, Li YL, Xu ZX (2018) AMP-activated protein kinase protects against necroptosis via regulation of Keap1-PGAM5 complex. Int J Cardiol 259:153–162. https://doi.org/10.1016/j.ijcard.2018.01.036

    Article  PubMed  PubMed Central  Google Scholar 

  30. Zhang T, Zhang Y, Cui M, Jin L, Wang Y, Lv F, Liu Y, Zheng W, Shang H, Zhang J, Zhang M, Wu H, Guo J, Zhang X, Hu X, Cao CM, Xiao RP (2016) CaMKII is a RIP3 substrate mediating ischemia- and oxidative stress-induced myocardial necroptosis. Nat Med 22(2):175–182. https://doi.org/10.1038/nm.4017

    Article  CAS  PubMed  Google Scholar 

  31. Yang Z, Li C, Wang Y, Yang J, Yin Y, Liu M, Shi Z, Mu N, Yu L, Ma H (2018) Melatonin attenuates chronic pain related myocardial ischemic susceptibility through inhibiting RIP3-MLKL/CaMKII dependent necroptosis. J Mol Cell Cardiol 125:185–194. https://doi.org/10.1016/j.yjmcc.2018.10.018

    Article  CAS  PubMed  Google Scholar 

  32. Zhu P, Hu S, Jin Q, Li D, Tian F, Toan S, Li Y, Zhou H, Chen Y (2018) Ripk3 promotes ER stress-induced necroptosis in cardiac IR injury: a mechanism involving calcium overload/XO/ROS/mPTP pathway. Redox Biol 16:157–168. https://doi.org/10.1016/j.redox.2018.02.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zhou H, Li D, Zhu P, Ma Q, Toan S, Wang J, Hu S, Chen Y, Zhang Y (2018) Inhibitory effect of melatonin on necroptosis via repressing the Ripk3-PGAM5-CypD-mPTP pathway attenuates cardiac microvascular ischemia-reperfusion injury. J Pineal Res 65(3):e12503. https://doi.org/10.1111/jpi.12503

    Article  CAS  PubMed  Google Scholar 

  34. Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, Cushman M, Das SR, de Ferranti S, Despres JP, Fullerton HJ, Howard VJ, Huffman MD, Isasi CR, Jimenez MC, Judd SE, Kissela BM, Lichtman JH, Lisabeth LD, Liu S, Mackey RH, Magid DJ, McGuire DK, Mohler ER 3rd, Moy CS, Muntner P, Mussolino ME, Nasir K, Neumar RW, Nichol G, Palaniappan L, Pandey DK, Reeves MJ, Rodriguez CJ, Rosamond W, Sorlie PD, Stein J, Towfighi A, Turan TN, Virani SS, Woo D, Yeh RW, Turner MB, Writing Group M, American Heart Association Statistics C, Stroke Statistics S (2016) Heart disease and stroke statistics-2016 update: a report from the American Heart Association. Circulation 133(4):e38–e360. https://doi.org/10.1161/CIR.0000000000000350

    Article  PubMed  Google Scholar 

  35. Wang D, Wang Z, Zhang L, Wang Y (2017) Roles of cells from the arterial vessel wall in atherosclerosis. Mediat Inflamm 2017:8135934. https://doi.org/10.1155/2017/8135934

    Article  CAS  Google Scholar 

  36. Tian F, Yao J, Yan M, Sun X, Wang W, Gao W, Tian Z, Guo S, Dong Z, Li B, Gao T, Shan P, Liu B, Wang H, Cheng J, Gao Q, Zhang Z, Cao W, Tian Y (2016) 5-Aminolevulinic acid-mediated sonodynamic therapy inhibits RIPK1/RIPK3-dependent necroptosis in THP-1-derived foam cells. Sci Rep 6:21992. https://doi.org/10.1038/srep21992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lin J, Li H, Yang M, Ren J, Huang Z, Han F, Huang J, Ma J, Zhang D, Zhang Z, Wu J, Huang D, Qiao M, Jin G, Wu Q, Huang Y, Du J, Han J (2013) A role of RIP3-mediated macrophage necrosis in atherosclerosis development. Cell Rep 3(1):200–210. https://doi.org/10.1016/j.celrep.2012.12.012

    Article  CAS  PubMed  Google Scholar 

  38. Meng L, Jin W, Wang X (2015) RIP3-mediated necrotic cell death accelerates systematic inflammation and mortality. Proc Natl Acad Sci USA 112(35):11007–11012. https://doi.org/10.1073/pnas.1514730112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Karunakaran D, Geoffrion M, Wei L, Gan W, Richards L, Shangari P, DeKemp EM, Beanlands RA, Perisic L, Maegdefessel L, Hedin U, Sad S, Guo L, Kolodgie FD, Virmani R, Ruddy T, Rayner KJ (2016) Targeting macrophage necroptosis for therapeutic and diagnostic interventions in atherosclerosis. Sci Adv 2(7):e1600224. https://doi.org/10.1126/sciadv.1600224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Chtourou Y, Slima AB, Makni M, Gdoura R, Fetoui H (2015) Naringenin protects cardiac hypercholesterolemia-induced oxidative stress and subsequent necroptosis in rats. Pharmacol Rep 67(6):1090–1097. https://doi.org/10.1016/j.pharep.2015.04.002

    Article  CAS  PubMed  Google Scholar 

  41. Zhang YZ, Wang L, Zhang JJ, Xiong XM, Zhang D, Tang XM, Luo XJ, Ma QL, Peng J (2018) Vascular peroxide 1 promotes ox-LDL-induced programmed necrosis in endothelial cells through a mechanism involving beta-catenin signaling. Atherosclerosis 274:128–138. https://doi.org/10.1016/j.atherosclerosis.2018.04.031

    Article  CAS  PubMed  Google Scholar 

  42. Szobi A, Goncalvesova E, Varga ZV, Leszek P, Kusmierczyk M, Hulman M, Kyselovic J, Ferdinandy P, Adameova A (2017) Analysis of necroptotic proteins in failing human hearts. J Transl Med 15(1):86. https://doi.org/10.1186/s12967-017-1189-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Li L, Chen Y, Doan J, Murray J, Molkentin JD, Liu Q (2014) Transforming growth factor beta-activated kinase 1 signaling pathway critically regulates myocardial survival and remodeling. Circulation 130(24):2162–2172. https://doi.org/10.1161/CIRCULATIONAHA.114.011195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Guo X, Yin H, Li L, Chen Y, Li J, Doan J, Steinmetz R, Liu Q (2017) Cardioprotective role of tumor necrosis factor receptor-associated factor 2 by suppressing apoptosis and necroptosis. Circulation 136(8):729–742. https://doi.org/10.1161/CIRCULATIONAHA.116.026240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Zhao M, Lu L, Lei S, Chai H, Wu S, Tang X, Bao Q, Chen L, Wu W, Liu X (2016) Inhibition of receptor interacting protein kinases attenuates cardiomyocyte hypertrophy induced by palmitic acid. Oxid Med Cell Longev 2016:1451676. https://doi.org/10.1155/2016/1451676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Soppert J, Kraemer S, Beckers C, Averdunk L, Mollmann J, Denecke B, Goetzenich A, Marx G, Bernhagen J, Stoppe C (2018) Soluble CD74 reroutes MIF/CXCR4/AKT-mediated survival of cardiac myofibroblasts to necroptosis. J Am Heart Assoc 7(17):e009384. https://doi.org/10.1161/JAHA.118.009384

    Article  PubMed  PubMed Central  Google Scholar 

  47. Peng S, Xu J, Ruan W, Li S, Xiao F (2017) PPAR-gamma activation prevents septic cardiac dysfunction via inhibition of apoptosis and necroptosis. Oxid Med Cell Longev 2017:8326749. https://doi.org/10.1155/2017/8326749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Zhou F, Jiang X, Teng L, Yang J, Ding J, He C (2018) Necroptosis may be a novel mechanism for cardiomyocyte death in acute myocarditis. Mol Cell Biochem 442(1–2):11–18. https://doi.org/10.1007/s11010-017-3188-5

    Article  CAS  PubMed  Google Scholar 

  49. Zhang L, Feng Q, Wang T (2018) Necrostatin-1 protects against paraquat-induced cardiac contractile dysfunction via RIP1-RIP3-MLKL-dependent necroptosis pathway. Cardiovasc Toxicol 18(4):346–355. https://doi.org/10.1007/s12012-017-9441-z

    Article  CAS  PubMed  Google Scholar 

  50. Xu Z, Jin Y, Yan H, Gao Z, Xu B, Yang B, He Q, Shi Q, Luo P (2018) High-mobility group box 1 protein-mediated necroptosis contributes to dasatinib-induced cardiotoxicity. Toxicol Lett 296:39–47. https://doi.org/10.1016/j.toxlet.2018.08.003

    Article  CAS  PubMed  Google Scholar 

  51. Zhang L, Wei J, Ren L, Zhang J, Yang M, Jing L, Wang J, Sun Z, Zhou X (2017) Endosulfan inducing apoptosis and necroptosis through activation RIPK signaling pathway in human umbilical vascular endothelial cells. Environ Sci Pollut Res Int 24(1):215–225. https://doi.org/10.1007/s11356-016-7652-7

    Article  CAS  PubMed  Google Scholar 

  52. Xu Y, Wang J, Song X, Qu L, Wei R, He F, Wang K, Luo B (2016) RIP3 induces ischemic neuronal DNA degradation and programmed necrosis in rat via AIF. Sci Rep 6:29362. https://doi.org/10.1038/srep29362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Yang R, Hu K, Chen J, Zhu S, Li L, Lu H, Li P, Dong R (2017) Necrostatin-1 protects hippocampal neurons against ischemia/reperfusion injury via the RIP3/DAXX signaling pathway in rats. Neurosci Lett 651:207–215. https://doi.org/10.1016/j.neulet.2017.05.016

    Article  CAS  PubMed  Google Scholar 

  54. Li J, Zhang J, Zhang Y, Wang Z, Song Y, Wei S, He M, You S, Jia J, Cheng J (2019) TRAF2 protects against cerebral ischemia-induced brain injury by suppressing necroptosis. Cell Death Dis 10(5):328. https://doi.org/10.1038/s41419-019-1558-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Degterev A, Huang Z, Boyce M, Li Y, Jagtap P, Mizushima N, Cuny GD, Mitchison TJ, Moskowitz MA, Yuan J (2005) Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury. Nat Chem Biol 1(2):112–119. https://doi.org/10.1038/nchembio711

    Article  CAS  PubMed  Google Scholar 

  56. Yin B, Xu Y, Wei RL, He F, Luo BY, Wang JY (2015) Inhibition of receptor-interacting protein 3 upregulation and nuclear translocation involved in Necrostatin-1 protection against hippocampal neuronal programmed necrosis induced by ischemia/reperfusion injury. Brain Res 1609:63–71. https://doi.org/10.1016/j.brainres.2015.03.024

    Article  CAS  PubMed  Google Scholar 

  57. Chen Y, Zhang L, Yu H, Song K, Shi J, Chen L, Cheng J (2018) Necrostatin-1 improves long-term functional recovery through protecting oligodendrocyte precursor cells after transient focal cerebral ischemia in mice. Neuroscience 371:229–241. https://doi.org/10.1016/j.neuroscience.2017.12.007

    Article  CAS  PubMed  Google Scholar 

  58. Li W, Liu J, Chen JR, Zhu YM, Gao X, Ni Y, Lin B, Li H, Qiao SG, Wang C, Zhang HL, Ao GZ (2018) Neuroprotective effects of DTIO, a novel analog of Nec-1, in acute and chronic stages after ischemic stroke. Neuroscience 390:12–29. https://doi.org/10.1016/j.neuroscience.2018.07.044

    Article  CAS  PubMed  Google Scholar 

  59. Yang XS, Yi TL, Zhang S, Xu ZW, Yu ZQ, Sun HT, Yang C, Tu Y, Cheng SX (2017) Hypoxia-inducible factor-1 alpha is involved in RIP-induced necroptosis caused by in vitro and in vivo ischemic brain injury. Sci Rep 7(1):5818. https://doi.org/10.1038/s41598-017-06088-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Zhang YY, Liu WN, Li YQ, Zhang XJ, Yang J, Luo XJ, Peng J (2019) Ligustroflavone reduces necroptosis in rat brain after ischemic stroke through targeting RIPK1/RIPK3/MLKL pathway. Naunyn Schmiedebergs Arch Pharmacol 392(9):1085–1095. https://doi.org/10.1007/s00210-019-01656-9

    Article  CAS  PubMed  Google Scholar 

  61. Tian J, Guo S, Chen H, Peng JJ, Jia MM, Li NS, Zhang XJ, Yang J, Luo XJ, Peng J (2018) Combination of emricasan with ponatinib synergistically reduces ischemia/reperfusion injury in rat brain through simultaneous Prevention of apoptosis and necroptosis. Transl Stroke Res 9(4):382–392. https://doi.org/10.1007/s12975-017-0581-z

    Article  CAS  PubMed  Google Scholar 

  62. Mezzaroma E, Toldo S, Farkas D, Seropian IM, Van Tassell BW, Salloum FN, Kannan HR, Menna AC, Voelkel NF, Abbate A (2011) The inflammasome promotes adverse cardiac remodeling following acute myocardial infarction in the mouse. Proc Natl Acad Sci USA 108(49):19725–19730. https://doi.org/10.1073/pnas.1108586108

    Article  PubMed  PubMed Central  Google Scholar 

  63. Kawaguchi M, Takahashi M, Hata T, Kashima Y, Usui F, Morimoto H, Izawa A, Takahashi Y, Masumoto J, Koyama J, Hongo M, Noda T, Nakayama J, Sagara J, Taniguchi S, Ikeda U (2011) Inflammasome activation of cardiac fibroblasts is essential for myocardial ischemia/reperfusion injury. Circulation 123(6):594–604. https://doi.org/10.1161/CIRCULATIONAHA.110.982777

    Article  CAS  PubMed  Google Scholar 

  64. Sandanger O, Ranheim T, Vinge LE, Bliksoen M, Alfsnes K, Finsen AV, Dahl CP, Askevold ET, Florholmen G, Christensen G, Fitzgerald KA, Lien E, Valen G, Espevik T, Aukrust P, Yndestad A (2013) The NLRP3 inflammasome is up-regulated in cardiac fibroblasts and mediates myocardial ischaemia-reperfusion injury. Cardiovasc Res 99(1):164–174. https://doi.org/10.1093/cvr/cvt091

    Article  CAS  PubMed  Google Scholar 

  65. Nazir S, Gadi I, Al-Dabet MM, Elwakiel A, Kohli S, Ghosh S, Manoharan J, Ranjan S, Bock F, Braun-Dullaeus RC, Esmon CT, Huber TB, Camerer E, Dockendorff C, Griffin JH, Isermann B, Shahzad K (2017) Cytoprotective activated protein C averts Nlrp3 inflammasome-induced ischemia-reperfusion injury via mTORC1 inhibition. Blood 130(24):2664–2677. https://doi.org/10.1182/blood-2017-05-782102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Chen A, Chen Z, Xia Y, Lu D, Yang X, Sun A, Zou Y, Qian J, Ge J (2018) Liraglutide attenuates NLRP3 inflammasome-dependent pyroptosis via regulating SIRT1/NOX4/ROS pathway in H9c2 cells. Biochem Biophys Res Commun 499(2):267–272. https://doi.org/10.1016/j.bbrc.2018.03.142

    Article  CAS  PubMed  Google Scholar 

  67. Lei Q, Yi T, Chen C (2018) NF-kappaB-gasdermin D (GSDMD) axis couples oxidative stress and NACHT, LRR and PYD domains-containing protein 3 (NLRP3) inflammasome-mediated cardiomyocyte pyroptosis following myocardial infarction. Med Sci Monit 24:6044–6052. https://doi.org/10.12659/MSM.908529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Ye B, Chen X, Dai S, Han J, Liang X, Lin S, Cai X, Huang Z, Huang W (2019) Emodin alleviates myocardial ischemia/reperfusion injury by inhibiting gasdermin D-mediated pyroptosis in cardiomyocytes. Drug Des Devel Ther 13:975–990. https://doi.org/10.2147/DDDT.S195412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Audia JP, Yang XM, Crockett ES, Housley N, Haq EU, O’Donnell K, Cohen MV, Downey JM, Alvarez DF (2018) Caspase-1 inhibition by VX-765 administered at reperfusion in P2Y12 receptor antagonist-treated rats provides long-term reduction in myocardial infarct size and preservation of ventricular function. Basic Res Cardiol 113(5):32. https://doi.org/10.1007/s00395-018-0692-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Do Carmo H, Arjun S, Petrucci O, Yellon DM, Davidson SM (2018) The caspase 1 inhibitor VX-765 protects the isolated rat heart via the RISK pathway. Cardiovasc Drugs Ther 32(2):165–168. https://doi.org/10.1007/s10557-018-6781-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Pan J, Han L, Guo J, Wang X, Liu D, Tian J, Zhang M, An F (2018) AIM2 accelerates the atherosclerotic plaque progressions in ApoE−/− mice. Biochem Biophys Res Commun 498(3):487–494. https://doi.org/10.1016/j.bbrc.2018.03.005

    Article  CAS  PubMed  Google Scholar 

  72. Zhang Y, Liu X, Bai X, Lin Y, Li Z, Fu J, Li M, Zhao T, Yang H, Xu R, Li J, Ju J, Cai B, Xu C, Yang B (2018) Melatonin prevents endothelial cell pyroptosis via regulation of long noncoding RNA MEG3/miR-223/NLRP3 axis. J Pineal Res. https://doi.org/10.1111/jpi.12449

    Article  PubMed  PubMed Central  Google Scholar 

  73. Lin J, Shou X, Mao X, Dong J, Mohabeer N, Kushwaha KK, Wang L, Su Y, Fang H, Li D (2013) Oxidized low density lipoprotein induced caspase-1 mediated pyroptotic cell death in macrophages: implication in lesion instability? PLoS ONE 8(4):e62148. https://doi.org/10.1371/journal.pone.0062148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Li P, Zhong X, Li J, Liu H, Ma X, He R, Zhao Y (2018) MicroRNA-30c-5p inhibits NLRP3 inflammasome-mediated endothelial cell pyroptosis through FOXO3 down-regulation in atherosclerosis. Biochem Biophys Res Commun 503(4):2833–2840. https://doi.org/10.1016/j.bbrc.2018.08.049

    Article  CAS  PubMed  Google Scholar 

  75. Zhaolin Z, Jiaojiao C, Peng W, Yami L, Tingting Z, Jun T, Shiyuan W, Jinyan X, Dangheng W, Zhisheng J, Zuo W (2019) OxLDL induces vascular endothelial cell pyroptosis through miR-125a-5p/TET2 pathway. J Cell Physiol 234(5):7475–7491. https://doi.org/10.1002/jcp.27509

    Article  CAS  PubMed  Google Scholar 

  76. Wu X, Zhang H, Qi W, Zhang Y, Li J, Li Z, Lin Y, Bai X, Liu X, Chen X, Yang H, Xu C, Zhang Y, Yang B (2018) Nicotine promotes atherosclerosis via ROS-NLRP3-mediated endothelial cell pyroptosis. Cell Death Dis 9(2):171. https://doi.org/10.1038/s41419-017-0257-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Zhang Y, Li X, Pitzer AL, Chen Y, Wang L, Li PL (2015) Coronary endothelial dysfunction induced by nucleotide oligomerization domain-like receptor protein with pyrin domain containing 3 inflammasome activation during hypercholesterolemia: beyond inflammation. Antioxid Redox Signal 22(13):1084–1096. https://doi.org/10.1089/ars.2014.5978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Lopez-Pastrana J, Ferrer LM, Li YF, Xiong X, Xi H, Cueto R, Nelson J, Sha X, Li X, Cannella AL, Imoukhuede PI, Qin X, Choi ET, Wang H, Yang XF (2015) Inhibition of caspase-1 activation in endothelial cells improves angiogenesis: a novel therapeutic potential for ischemia. J Biol Chem 290(28):17485–17494. https://doi.org/10.1074/jbc.M115.641191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Asbun J, Villarreal FJ (2006) The pathogenesis of myocardial fibrosis in the setting of diabetic cardiomyopathy. J Am Coll Cardiol 47(4):693–700. https://doi.org/10.1016/j.jacc.2005.09.050

    Article  CAS  PubMed  Google Scholar 

  80. Boudina S, Abel ED (2010) Diabetic cardiomyopathy, causes and effects. Rev Endocr Metab Disord 11(1):31–39. https://doi.org/10.1007/s11154-010-9131-7

    Article  PubMed  PubMed Central  Google Scholar 

  81. Litwin SE (2013) Diabetes and the heart: is there objective evidence of a human diabetic cardiomyopathy? Diabetes 62(10):3329–3330. https://doi.org/10.2337/db13-0683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Lee HM, Kim JJ, Kim HJ, Shong M, Ku BJ, Jo EK (2013) Upregulated NLRP3 inflammasome activation in patients with type 2 diabetes. Diabetes 62(1):194–204. https://doi.org/10.2337/db12-0420

    Article  CAS  PubMed  Google Scholar 

  83. Yang F, Qin Y, Wang Y, Meng S, Xian H, Che H, Lv J, Li Y, Yu Y, Bai Y, Wang L (2019) Metformin inhibits the NLRP3 inflammasome via AMPK/mTOR-dependent effects in diabetic cardiomyopathy. Int J Biol Sci 15(5):1010–1019. https://doi.org/10.7150/ijbs.29680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Luo B, Li B, Wang W, Liu X, Xia Y, Zhang C, Zhang M, Zhang Y, An F (2014) NLRP3 gene silencing ameliorates diabetic cardiomyopathy in a type 2 diabetes rat model. PLoS ONE 9(8):e104771. https://doi.org/10.1371/journal.pone.0104771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Wang X, Pan J, Liu H, Zhang M, Liu D, Lu L, Tian J, Liu M, Jin T, An F (2019) AIM2 gene silencing attenuates diabetic cardiomyopathy in type 2 diabetic rat model. Life Sci 221:249–258. https://doi.org/10.1016/j.lfs.2019.02.035

    Article  CAS  PubMed  Google Scholar 

  86. Li X, Du N, Zhang Q, Li J, Chen X, Liu X, Hu Y, Qin W, Shen N, Xu C, Fang Z, Wei Y, Wang R, Du Z, Zhang Y, Lu Y (2014) MicroRNA-30d regulates cardiomyocyte pyroptosis by directly targeting foxo3a in diabetic cardiomyopathy. Cell Death Dis 5:e1479. https://doi.org/10.1038/cddis.2014.430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Jeyabal P, Thandavarayan RA, Joladarashi D, Suresh Babu S, Krishnamurthy S, Bhimaraj A, Youker KA, Kishore R, Krishnamurthy P (2016) MicroRNA-9 inhibits hyperglycemia-induced pyroptosis in human ventricular cardiomyocytes by targeting ELAVL1. Biochem Biophys Res Commun 471(4):423–429. https://doi.org/10.1016/j.bbrc.2016.02.065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Yang F, Qin Y, Lv J, Wang Y, Che H, Chen X, Jiang Y, Li A, Sun X, Yue E, Ren L, Li Y, Bai Y, Wang L (2018) Silencing long non-coding RNA Kcnq1ot1 alleviates pyroptosis and fibrosis in diabetic cardiomyopathy. Cell Death Dis 9(10):1000. https://doi.org/10.1038/s41419-018-1029-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Yang F, Wang Z, Wei X, Han H, Meng X, Zhang Y, Shi W, Li F, Xin T, Pang Q, Yi F (2014) NLRP3 deficiency ameliorates neurovascular damage in experimental ischemic stroke. J Cereb Blood Flow Metab 34(4):660–667. https://doi.org/10.1038/jcbfm.2013.242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Zhang D, Qian J, Zhang P, Li H, Shen H, Li X, Chen G (2019) Gasdermin D serves as a key executioner of pyroptosis in experimental cerebral ischemia and reperfusion model both in vivo and in vitro. J Neurosci Res 97(6):645–660. https://doi.org/10.1002/jnr.24385

    Article  CAS  PubMed  Google Scholar 

  91. Ito M, Shichita T, Okada M, Komine R, Noguchi Y, Yoshimura A, Morita R (2015) Bruton’s tyrosine kinase is essential for NLRP3 inflammasome activation and contributes to ischaemic brain injury. Nat Commun 6:7360. https://doi.org/10.1038/ncomms8360

    Article  PubMed  Google Scholar 

  92. She Y, Shao L, Zhang Y, Hao Y, Cai Y, Cheng Z, Deng C, Liu X (2019) Neuroprotective effect of glycosides in Buyang Huanwu Decoction on pyroptosis following cerebral ischemia-reperfusion injury in rats. J Ethnopharmacol 242:112051. https://doi.org/10.1016/j.jep.2019.112051

    Article  CAS  PubMed  Google Scholar 

  93. An P, Xie J, Qiu S, Liu Y, Wang J, Xiu X, Li L, Tang M (2019) Hispidulin exhibits neuroprotective activities against cerebral ischemia reperfusion injury through suppressing NLRP3-mediated pyroptosis. Life Sci 232:116599. https://doi.org/10.1016/j.lfs.2019.116599

    Article  CAS  PubMed  Google Scholar 

  94. Zhu S, Zhang Z, Jia LQ, Zhan KX, Wang LJ, Song N, Liu Y, Cheng YY, Yang YJ, Guan L, Min DY, Yang GL (2019) Valproic acid attenuates global cerebral ischemia/reperfusion injury in gerbils via anti-pyroptosis pathways. Neurochem Int 124:141–151. https://doi.org/10.1016/j.neuint.2019.01.003

    Article  CAS  PubMed  Google Scholar 

  95. Bulluck H, Rosmini S, Abdel-Gadir A, White SK, Bhuva AN, Treibel TA, Fontana M, Ramlall M, Hamarneh A, Sirker A, Herrey AS, Manisty C, Yellon DM, Kellman P, Moon JC, Hausenloy DJ (2016) Residual myocardial iron following intramyocardial hemorrhage during the convalescent phase of reperfused ST-segment-elevation myocardial infarction and adverse left ventricular remodeling. Circ Cardiovasc Imaging. https://doi.org/10.1161/circimaging.116.004940

    Article  PubMed  PubMed Central  Google Scholar 

  96. Baba Y, Higa JK, Shimada BK, Horiuchi KM, Suhara T, Kobayashi M, Woo JD, Aoyagi H, Marh KS, Kitaoka H, Matsui T (2018) Protective effects of the mechanistic target of rapamycin against excess iron and ferroptosis in cardiomyocytes. Am J Physiol Heart Circ Physiol 314(3):H659–H668. https://doi.org/10.1152/ajpheart.00452.2017

    Article  CAS  PubMed  Google Scholar 

  97. Fang X, Wang H, Han D, Xie E, Yang X, Wei J, Gu S, Gao F, Zhu N, Yin X, Cheng Q, Zhang P, Dai W, Chen J, Yang F, Yang HT, Linkermann A, Gu W, Min J, Wang F (2019) Ferroptosis as a target for protection against cardiomyopathy. Proc Natl Acad Sci USA 116(7):2672–2680. https://doi.org/10.1073/pnas.1821022116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Liu B, Zhao C, Li H, Chen X, Ding Y, Xu S (2018) Puerarin protects against heart failure induced by pressure overload through mitigation of ferroptosis. Biochem Biophys Res Commun 497(1):233–240. https://doi.org/10.1016/j.bbrc.2018.02.061

    Article  CAS  PubMed  Google Scholar 

  99. Gao M, Monian P, Quadri N, Ramasamy R, Jiang X (2015) Glutaminolysis and transferrin regulate ferroptosis. Mol Cell 59(2):298–308. https://doi.org/10.1016/j.molcel.2015.06.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Garcia-Yebenes I, Sobrado M, Moraga A, Zarruk JG, Romera VG, Pradillo JM, Perez de la Ossa N, Moro MA, Davalos A, Lizasoain I (2012) Iron overload, measured as serum ferritin, increases brain damage induced by focal ischemia and early reperfusion. Neurochem Int 61(8):1364–1369. https://doi.org/10.1016/j.neuint.2012.09.014

    Article  CAS  PubMed  Google Scholar 

  101. Tuo QZ, Lei P, Jackman KA, Li XL, Xiong H, Li XL, Liuyang ZY, Roisman L, Zhang ST, Ayton S, Wang Q, Crouch PJ, Ganio K, Wang XC, Pei L, Adlard PA, Lu YM, Cappai R, Wang JZ, Liu R, Bush AI (2017) Tau-mediated iron export prevents ferroptotic damage after ischemic stroke. Mol Psychiatry 22(11):1520–1530. https://doi.org/10.1038/mp.2017.171

    Article  CAS  PubMed  Google Scholar 

  102. Guan X, Li X, Yang X, Yan J, Shi P, Ba L, Cao Y, Wang P (2019) The neuroprotective effects of carvacrol on ischemia/reperfusion-induced hippocampal neuronal impairment by ferroptosis mitigation. Life Sci 235:116795. https://doi.org/10.1016/j.lfs.2019.116795

    Article  CAS  PubMed  Google Scholar 

  103. Zille M, Karuppagounder SS, Chen Y, Gough PJ, Bertin J, Finger J, Milner TA, Jonas EA, Ratan RR (2017) Neuronal death after hemorrhagic stroke in vitro and in vivo shares features of ferroptosis and necroptosis. Stroke 48(4):1033–1043. https://doi.org/10.1161/STROKEAHA.116.015609

    Article  PubMed  PubMed Central  Google Scholar 

  104. Li Q, Han X, Lan X, Gao Y, Wan J, Durham F, Cheng T, Yang J, Wang Z, Jiang C, Ying M, Koehler RC, Stockwell BR, Wang J (2017) Inhibition of neuronal ferroptosis protects hemorrhagic brain. JCI Insight 2(7):e90777. https://doi.org/10.1172/jci.insight.90777

    Article  PubMed  PubMed Central  Google Scholar 

  105. Pieper AA, Walles T, Wei G, Clements EE, Verma A, Snyder SH, Zweier JL (2000) Myocardial postischemic injury is reduced by polyADPripose polymerase-1 gene disruption. Mol Med 6(4):271–282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Liaudet L, Szabo E, Timashpolsky L, Virag L, Cziraki A, Szabo C (2001) Suppression of poly (ADP-ribose) polymerase activation by 3-aminobenzamide in a rat model of myocardial infarction: long-term morphological and functional consequences. Br J Pharmacol 133(8):1424–1430. https://doi.org/10.1038/sj.bjp.0704185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Yang Z, Zingarelli B, Szabo C (2000) Effect of genetic disruption of poly (ADP-ribose) synthetase on delayed production of inflammatory mediators and delayed necrosis during myocardial ischemia-reperfusion injury. Shock 13(1):60–66. https://doi.org/10.1097/00024382-200013010-00011

    Article  CAS  PubMed  Google Scholar 

  108. Xiao CY, Chen M, Zsengeller Z, Li H, Kiss L, Kollai M, Szabo C (2005) Poly(ADP-Ribose) polymerase promotes cardiac remodeling, contractile failure, and translocation of apoptosis-inducing factor in a murine experimental model of aortic banding and heart failure. J Pharmacol Exp Ther 312(3):891–898. https://doi.org/10.1124/jpet.104.077164

    Article  CAS  PubMed  Google Scholar 

  109. Pillai JB, Russell HM, Raman J, Jeevanandam V, Gupta MP (2005) Increased expression of poly(ADP-ribose) polymerase-1 contributes to caspase-independent myocyte cell death during heart failure. Am J Physiol Heart Circ Physiol 288(2):H486–H496. https://doi.org/10.1152/ajpheart.00437.2004

    Article  CAS  PubMed  Google Scholar 

  110. Andrabi SA, Kim NS, Yu SW, Wang H, Koh DW, Sasaki M, Klaus JA, Otsuka T, Zhang Z, Koehler RC, Hurn PD, Poirier GG, Dawson VL, Dawson TM (2006) Poly(ADP-ribose) (PAR) polymer is a death signal. Proc Natl Acad Sci USA 103(48):18308–18313. https://doi.org/10.1073/pnas.0606526103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Mashimo M, Kato J, Moss J (2013) ADP-ribosyl-acceptor hydrolase 3 regulates poly (ADP-ribose) degradation and cell death during oxidative stress. Proc Natl Acad Sci USA 110(47):18964–18969. https://doi.org/10.1073/pnas.1312783110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Mashimo M, Bu X, Aoyama K, Kato J, Ishiwata-Endo H, Stevens LA, Kasamatsu A, Wolfe LA, Toro C, Adams D, Markello T, Gahl WA, Moss J (2019) PARP1 inhibition alleviates injury in ARH3-deficient mice and human cells. JCI Insight. https://doi.org/10.1172/jci.insight.124519

    Article  PubMed  PubMed Central  Google Scholar 

  113. Jin W, Xu W, Chen J, Zhang X, Shi L, Ren C (2016) Remote limb preconditioning protects against ischemia-induced neuronal death through ameliorating neuronal oxidative DNA damage and parthanatos. J Neurol Sci 366:8–17. https://doi.org/10.1016/j.jns.2016.04.038

    Article  CAS  PubMed  Google Scholar 

  114. Zhong H, Song R, Pang Q, Liu Y, Zhuang J, Chen Y, Hu J, Hu J, Liu Y, Liu Z, Tang J (2018) Propofol inhibits parthanatos via ROS-ER-calcium-mitochondria signal pathway in vivo and vitro. Cell Death Dis 9(10):932. https://doi.org/10.1038/s41419-018-0996-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Wang K, An T, Zhou LY, Liu CY, Zhang XJ, Feng C, Li PF (2015) E2F1-regulated miR-30b suppresses Cyclophilin D and protects heart from ischemia/reperfusion injury and necrotic cell death. Cell Death Differ 22(5):743–754. https://doi.org/10.1038/cdd.2014.165

    Article  CAS  PubMed  Google Scholar 

  116. Xu T, Ding W, Ao X, Chu X, Wan Q, Wang Y, Xiao D, Yu W, Li M, Yu F, Wang J (2019) ARC regulates programmed necrosis and myocardial ischemia/reperfusion injury through the inhibition of mPTP opening. Redox Biol 20:414–426. https://doi.org/10.1016/j.redox.2018.10.023

    Article  CAS  PubMed  Google Scholar 

  117. Bibli SI, Papapetropoulos A, Iliodromitis EK, Daiber A, Randriamboavonjy V, Steven S, Brouckaert P, Chatzianastasiou A, Kypreos KE, Hausenloy DJ, Fleming I, Andreadou I (2019) Nitroglycerine limits infarct size through S-nitrosation of cyclophilin D: a novel mechanism for an old drug. Cardiovasc Res 115(3):625–636. https://doi.org/10.1093/cvr/cvy222

    Article  CAS  PubMed  Google Scholar 

  118. Nicolli A, Basso E, Petronilli V, Wenger RM, Bernardi P (1996) Interactions of cyclophilin with the mitochondrial inner membrane and regulation of the permeability transition pore, and cyclosporin A-sensitive channel. J Biol Chem 271(4):2185–2192. https://doi.org/10.1074/jbc.271.4.2185

    Article  CAS  PubMed  Google Scholar 

  119. Khaspekov L, Friberg H, Halestrap A, Viktorov I, Wieloch T (1999) Cyclosporin A and its nonimmunosuppressive analogue N-Me-Val-4-cyclosporin A mitigate glucose/oxygen deprivation-induced damage to rat cultured hippocampal neurons. Eur J Neurosci 11(9):3194–3198. https://doi.org/10.1046/j.1460-9568.1999.00743.x

    Article  CAS  PubMed  Google Scholar 

  120. Matsumoto S, Friberg H, Ferrand-Drake M, Wieloch T (1999) Blockade of the mitochondrial permeability transition pore diminishes infarct size in the rat after transient middle cerebral artery occlusion. J Cereb Blood Flow Metab 19(7):736–741. https://doi.org/10.1097/00004647-199907000-00002

    Article  CAS  PubMed  Google Scholar 

  121. Vaseva AV, Marchenko ND, Ji K, Tsirka SE, Holzmann S, Moll UM (2012) p53 opens the mitochondrial permeability transition pore to trigger necrosis. Cell 149(7):1536–1548. https://doi.org/10.1016/j.cell.2012.05.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (No. 81872873 to Jun Peng, No. 81573430 to Xiu-Ju Luo). We sincerely thank Dr. Qingjie Li (Department of Internal Medicine, The University of Texas Medical Branch, USA) for his kind assistance in fixing the language problems in our manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiu-Ju Luo or Jun Peng.

Ethics declarations

Conflict of interest

The authors report no relationships that could be construed as a conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, LQ., Tian, J., Luo, XJ. et al. Targeting the pathways of regulated necrosis: a potential strategy for alleviation of cardio-cerebrovascular injury. Cell. Mol. Life Sci. 78, 63–78 (2021). https://doi.org/10.1007/s00018-020-03587-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-020-03587-8

Keywords

Navigation