Skip to main content
Log in

Small Mass Limit of a Langevin Equation on a Manifold

  • Published:
Annales Henri Poincaré Aims and scope Submit manuscript

Abstract

We study damped geodesic motion of a particle of mass m on a Riemannian manifold, in the presence of an external force and noise. Lifting the resulting stochastic differential equation to the orthogonal frame bundle, we prove that, as \({m \to 0}\), its solutions converge to solutions of a limiting equation which includes a noise-induced drift term. A very special case of the main result presents Brownian motion on the manifold as a limit of inertial systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Karatzas I., Shreve S.: Brownian Motion and Stochastic Calculus. Graduate Texts in Mathematics. Springer, New York (2014)

    Google Scholar 

  2. Nelson E.: Dynamical Theories of Brownian Motion, Mathematical Notes. Princeton University Press, Princeton (1967)

    MATH  Google Scholar 

  3. Casuso I., Khao J., Chami M., Paul-Gilloteaux P., Husain M., Duneau J.-P., Stahlberg H., Sturgis J.N., Scheuring S.: Characterization of the motion of membrane proteins using high-speed atomic force microscopy. Nat. Nanotechnol. 7(8), 525–529 (2012)

    Article  ADS  Google Scholar 

  4. Kärger J., Ruthven D., Theodorou D.: Diffusion in Nanoporous Materials. Wiley, New York (2012)

    Book  Google Scholar 

  5. Barkai E., Garini Y., Metzler R.: Strange kinetics of single molecules in living cells. Phys. Today 65(8), 29 (2012)

    Article  Google Scholar 

  6. Manzo C., Torreno-Pina J.A., Massignan P., Lapeyre G.J., Lewenstein M., Garcia Parajo M.F.: Weak ergodicity breaking of receptor motion in living cells stemming from random diffusivity. Phys. Rev. X. 5, 011021 (2015)

    Google Scholar 

  7. Ramaswamy S.: The mechanics and statistics of active matter. Annu. Rev. Condens. Matter Phys. 1, 323–345 (2010)

    Article  ADS  Google Scholar 

  8. Hsu E.: Stochastic Analysis on Manifolds, Contemporary Mathematics. American Mathematical Society, Providence (2002)

    Google Scholar 

  9. Stroock, D.W.: An Introduction to the Analysis of Paths on a Riemannian Manifold No. 74. American Mathematical Society, Providence (2005)

  10. Van Kampen N.: Brownian motion on a manifold. J. Stat. Phys. 44(1–2), 1–24 (1986)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Kubo, R., Toda, M., Hashitsume, N.: Statistical Physics II: Nonequilibrium Statistical Mechanics. Springer Series in Solid-State Sciences. Springer, Berlin (2012)

  12. Polettini M.: Generally covariant state-dependent diffusion. J. Stat. Mech. Theory Exp. 2013(07), P07005 (2013)

    Article  MathSciNet  Google Scholar 

  13. Hottovy S., McDaniel A., Volpe G., Wehr J.: The smoluchowski-kramers limit of stochastic differential equations with arbitrary state-dependent friction. Commun. Math. Phys. 336(3), 1259–1283 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Smoluchowski M.V.: Drei vortrage uber diffusion, brownsche bewegung und koagulation von kolloidteilchen. Z. Phys. 17, 557–585 (1916)

    ADS  Google Scholar 

  15. Pavliotis G.A., Stuart A.M.: White noise limits for inertial particles in a random field. Multiscale Model. Simul. 1(4), 527–553 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  16. Chevalier C., Debbasch F.: Relativistic diffusions: a unifying approach. J. Math. Phys. 49(4), 383 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  17. Bailleul I.: A stochastic approach to relativistic diffusions. Annales de l’institut Henri Poincaré (B) 46, 760–795 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  18. Pinsky M.A.: Isotropic transport process on a Riemannian manifold. Trans. Am. Math. Soc. 218, 353–360 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  19. Pinsky M.A.: Homogenization in stochastic differential geometry. Publ. Res. Inst. Math. Sci. 17(1), 235–244 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  20. JØrgensen E.: Construction of the brownian motion and the ornstein-uhlenbeck process in a riemannian manifold on basis of the gangolli-mc.kean injection scheme. Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete. 44(1), 71–87 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  21. Dowell, R.M.: Differentiable approximations to Brownian motion on manifolds, Ph.D. thesis. University of Warwick (1980)

  22. Li X.-M.: Random perturbation to the geodesic equation. Ann. Probab. 44(1), 544–566 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  23. Angst, J., Bailleul, I., Tardif, C.: Kinetic brownian motion on Riemannian manifolds. arXiv:1501.03679, (2015, arXiv preprint)

  24. Bismut J.-M.: The hypoelliptic laplacian on the cotangent bundle. J. Am. Math. Soc. 18(2), 379–476 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  25. Bismut J.-M.: Hypoelliptic laplacian and probability. J. Math. Soc. Japan 67(4), 1317–1357 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  26. Herzog, D.P., Hottovy, S., Volpe, G.: The small-mass limit for Langevin dynamics with unbounded coefficients and positive friction. arXiv:1510.04187 (2015, arXiv preprint)

  27. Seifert U.: Stochastic thermodynamics, fluctuation theorems and molecular machines. Rep. Prog. Phys. 75(12), 126001 (2012)

    Article  ADS  Google Scholar 

  28. Kobayashi S., Nomizu K.: Foundations of Differential Geometry Set. Wiley Classics Library, Wiley, New York (2009)

    MATH  Google Scholar 

  29. Teschl, G.: Ordinary Differential Equations and Dynamical Systems. Graduate Studies in Mathematics. American Mathematical Society, Providence (2012)

  30. Kedem G.: A posteriori error bounds for two-point boundary value problems. SIAM J. Numer. Anal. 18(3), 431–448 (1981)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. Freidlin M.: Some remarks on the Smoluchowski–Kramers approximation. J. Stat. Phys. 117(3), 617–634 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. Ortega, J.: Matrix Theory: A Second Course. University Series in Mathematics. Springer US (2013)

  33. Wilcox R.M.: Exponential operators and parameter differentiation in quantum physics. J. Math. Phys. 8(4), 962 (1967)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. Volpe G., Wehr J.: Effective drifts in dynamical systems with multiplicative noise: A review of recent progress. Rep. Prog. Phys. 79(5), 053901 (2016)

    Article  ADS  Google Scholar 

  35. Lee, J.: Introduction to Smooth Manifolds. Graduate Texts in Mathematics. Springer, New York (2013)

  36. Lee, J.: Riemannian Manifolds: An Introduction to Curvature. Graduate Texts in Mathematics. Springer, New York (2006)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeremiah Birrell.

Additional information

Communicated by Christian Maes.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Birrell, J., Hottovy, S., Volpe, G. et al. Small Mass Limit of a Langevin Equation on a Manifold. Ann. Henri Poincaré 18, 707–755 (2017). https://doi.org/10.1007/s00023-016-0508-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00023-016-0508-3

Navigation