Skip to main content
Log in

Boundedness of Massless Scalar Waves on Kerr Interior Backgrounds

  • Original Paper
  • Published:
Annales Henri Poincaré Aims and scope Submit manuscript

Abstract

We consider solutions of the massless scalar wave equation \(\Box _g\psi =0\), without symmetry, on fixed subextremal Kerr backgrounds \(({{\mathcal {M}}}, g)\). It follows from previous analyses in the Kerr exterior that for solutions \(\psi \) arising from sufficiently regular data on a two-ended Cauchy hypersurface, the solution and its derivatives decay suitably fast along the event horizon \({{\mathcal {H}}}^+\). Using the derived decay rate, we show that \(\psi \) is in fact uniformly bounded, \(|\psi |\le C\), in the black hole interior up to and including the bifurcate Cauchy horizon \({{\mathcal {C}}}{{\mathcal {H}}}^+\), to which \(\psi \) in fact extends continuously. In analogy to our previous paper [31], on boundedness of solutions to the massless scalar wave equation on fixed subextremal Reissner–Nordström backgrounds, the analysis depends on weighted energy estimates, commutation by angular momentum operators and an application of Sobolev embedding. In contrast to the Reissner–Nordström case, the commutation leads to additional error terms that have to be controlled.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Notes

  1. We will later introduce a function L which quantifies the difference between the volume elements of these spheres, see Sect. 2.2.3 and also (74). Since L is bounded, we are able to omit it in the above statements.

  2. The reader unfamiliar with this solution may, for example, consult [36] for a brief review, or the more detailed [52].

  3. This feature is predicted from the zeroth law of black hole thermodynamics, see [66].

  4. The constant multiplying v in transformation (5657) is added in hindsight. It will render the parameter \(b^{\tilde{\phi }}\), see (62), zero at \({{\mathcal {C}}}{{\mathcal {H}}}^+\).

  5. Readers familiar with [31] might notice that, for \(|a|\ll M\), the quantity in (106) defining the sign approaches \(M-\frac{a^2}{r}\) which is analogous to the charged case with a in place of the charge e.

  6. Comparing the above expression (109) with expression (B2) together with (76), we see that here no weights of \(\Omega ^2\) show up. Recall that we have chosen coordinates which are not regular at the horizons, see Fig. 4. Therefore, in these coordinates the weights \(\Omega ^2\) approach zero, while the component \(X^u\) of the vector field multiplier blows up. Their product remains finite as can be seen more easily when transforming to regular coordinates at the horizon.

  7. Refer to the end of Sect. 2.2.3 for further discussion of the volume elements.

  8. For better readability, we have written out the entire expression and chosen different letters for the coefficients instead of using the notation \(E^{lm}_i\) of Eq. (E6).

  9. Doing this substitution we keep the expression of the metric (58) the same.

  10. Since u is always positive in the remaining region under consideration \({{\mathcal {R}}}_{VI}\), we have omitted the absolute value in the u-weight.

  11. We estimate as in (223) and (224) but exploiting that \(\int _{{\tilde{u}}}^{u} (|u|+1)^{-p}\rightarrow 0\) as \({\tilde{u}}, u\rightarrow \infty \).

  12. By non-degeneracy we mean that the multiplier is constructed such that it does not become null on the hypersurfaces of interest.

  13. Although Reissner–Nordström spacetimes with subextremal range approaching the extremal range are expected to show a more stable behavior on \({{\mathcal {C}}}{{\mathcal {H}}}^+\) in comparison with black holes with a small charge and mass ratio, it remains open to show that solutions are not in \(W^{1,p}_{\tiny {\text{ loc }}}\), for all \(1<p<2\), for the subextremal range \(1\le \log {\frac{ r_+}{r_-}}\).

  14. A function \(\psi \) belonging to the Sobolev space \(W^{1,2}_{\tiny {\text{ loc }}}\) would have the properties that locally \(\psi \) and all of its first weak derivatives exist and are square integrable. Taking (1) seriously as a model for the full Einstein field equations and therefore considering \(\psi \) as an agent for the metric two tensor g, the result of Luk and Oh suggests that in the full theory the Christoffel symbols would fail to be square integrable. For an introduction to Sobolev spaces, refer, for example, to [29, 65].

  15. For Schwarzschild spacetime this means that the Cauchy hypersurface does not intersect the white hole of the solution.

References

  1. Alinhac, S.: Geometric Analysis of Hyperbolic Differential Equations: An Introduction. London Mathematical Society Lecture Note Series, vol. 374. Cambridge University Press, Cambridge (2010)

    Book  Google Scholar 

  2. Andersson, L., Blue, P.: Hidden symmetries and decay for the wave equation on the Kerr spacetime. arXiv:0908.2265 [math.AP] (2009)

  3. Aretakis, S.: Stability and instability of extreme Reissner–Nordström black hole spacetimes for linear scalar perturbations I. Commun. Math. Phys. 307, 17 (2011). arXiv:1110.2007

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Aretakis, S.: Stability and instability of extreme Reissner–Nordström black hole spacetimes for linear scalar perturbations II. Annales of Henri Poincaré 8, 1491–1538 (2011). arXiv:1110.2009

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Aretakis, S.: Decay of axisymmetric solutions of the wave equation on extreme Kerr backgrounds. J. Funct. Anal. 263, 2770–2831 (2012). arXiv:1110.2006

    Article  MathSciNet  MATH  Google Scholar 

  6. Brady, P.R., Chambers, C.M.: Nonlinear instability of Kerr-type Cauchy horizons. Phys. Rev. D 51, 4177 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  7. Carter, B.: Black hole equilibrium states. In: edited DeWitt, B.S., DeWitt, C. (eds.) Black Holes. Les Houches Lectures. Gordon and Breach, New York (1972)

  8. Christodoulou, D.: On the global initial value problem and the issue of singularities. Class. Quantum Grav. 16, A23–A35 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  9. Christodoulou, D.: The formation of black holes in general relativity. EMS Monographs in Mathematics. European Mathematical Society (EMS), Zürich. (2009) arXiv:0805.3880

  10. Costa, J.L., Franzen, A.T.: Bounded energy waves on the black hole interior of Reissner–Nordström–de Sitter. Annales of Henri Poincaré 18(10), 3371–3398 (2017). arXiv:1607.01018

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Costa, J.L., Girão, P.M., Natário, J., Silva, J.D.: On the global uniqueness for the Einstein–Maxwell-scalar field system with a cosmological constant. Part 1: well posedness and breakdown criterion. Class. Quant. Gravity 32, 015017 (2015). arXiv:1406.7261

    Article  ADS  MATH  Google Scholar 

  12. Costa, J.L., Girão, P.M., Natário, J., Silva, J.D.: On the global uniqueness for the Einstein–Maxwell-scalar field system with a cosmological constant. Part 2: Structure of the solutions and stability of the Cauchy horizon. Commun. Math. Phys. 339(3) (2015). arXiv:1406.7253

  13. Costa, J.L., Girão, P.M., Natário, J., Silva, J.D.: On the global uniqueness for the Einstein–Maxwell-scalar field system with a cosmological constant. Part 3: Mass inflation and extendibility of the solutions. Annals of PDE3, 8, (2017). https://doi.org/10.1007/s40818-017-0028-6, arXiv:1406.7245

  14. Costa, J.L., Girão, P.M., Natário, J., Silva, J.D.: On the occurrence of mass inflation for the Einstein–Maxwell-scalar field system with a cosmological constant and an exponential Price law. Commun. Math. Phys. 361, 289 (2017). arXiv:1707.08975

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Dafermos, M.: Stability and Instability of the Cauchy horizon for the spherically symmetric Einstein–Maxwell-scalar field equations. Ann. Math. Second Ser. 158(3), 875–928 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  16. Dafermos, M.: The Interior of charged black holes and the problem of uniqueness in general relativity, pp. 0445–0504. Commun. Pure Appl. Math. LVIII (2005)

  17. Dafermos, M.: Black holes without spacelike singularities. Commun. Math. Phys. 332, 729–757 (2014). arXiv:1201.1797

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Dafermos, M.: The mathematical analysis of black holes in general relativity. Proc. ICM Seoul III, 747–772 (2014)

    MathSciNet  MATH  Google Scholar 

  19. Dafermos, M., Luk, J.: The interior of dynamical vacuum black holes I: the \(C^0\)-stability of the Kerr Cauchy horizon (2017). arXiv:1710.01722

  20. Dafermos, M., Rodnianski, I.: A proof of Price’s law for the collapse of a self-gravitating scalar field. Invent. Math. 162, 381–457 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Dafermos, M., Rodnianski, I.: Decay for solutions of the wave equation on Kerr exterior spacetimes I–II: the cases \(|a|\ll M\) or axisymmetry (2010). arXiv:1010.5132v1

  22. Dafermos, M., Rodnianski, I.: A proof of the uniform boundedness of solutions to the wave equation on slowly rotating Kerr backgrounds. Invent. Math. 185, 467–559 (2011). arXiv:0805.4309

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Dafermos, M., Rodnianski, I.: Lectures on black holes and linear waves. Clay Mathematics Proceedings. Am. Math. Soc. 17, 97–205 (2013). arXiv:0811.0354

    Google Scholar 

  24. Dafermos, M., Shlapentokh-Rothman, Y.: Time-translation invariance of scattering maps and blue-shift instabilities on Kerr Black Hole spacetimes. Commun. Math. Phys. 350, 985–1016 (2017). arXiv:1512.08260

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Dafermos, M., Shlapentokh-Rothman, Y.: Rough initial data and the strength of the blue-shift instability on cosmological black holes with \(\Lambda > 0\). Class. Quantum Gravity 35(19), 195010 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Dafermos, M., Holzegel, G., Rodninanski, I.: A scattering theory construction of dynamical black holes. J. Diff. Geom (to appear) (2013). arXiv:1306.5364

  27. Dafermos, M., Holzegel, G., Rodninanski, I.: The linear stability of the Schwarzschild solution to gravitational perturbations. Acta Math. 222, 1–214 (2019). arXiv:1601.06467

    Article  MathSciNet  MATH  Google Scholar 

  28. Dafermos, M., Rodninanski, I., Shlapentokh-Rothman, Y.: Decay for solutions of the wave equation on Kerr exterior spacetimes III: the full subextremal case \(|a| < M\). Ann. Math. 183, 787–913 (2016). arXiv:1402.7034

    Article  MathSciNet  MATH  Google Scholar 

  29. Evans, L.C.: Partial Differential Equations. American Mathematical Society, Providence (1998)

    MATH  Google Scholar 

  30. Frankel, T.: The Geometry of Physics, An Introduction. Cambridge University Press, Cambridge (1998)

    MATH  Google Scholar 

  31. Franzen, A.T.: Boundedness of massless scalar waves on Reissner–Nordström interior backgrounds. Commun. Math. Phys. 343(2) (2016). arXiv:1407.7093

  32. Franzen, A.T.: The wave equation on black hole interiors. Ph.D thesis (2015)

  33. Gajic, D.: Linear waves in the interior of extremal black holes I. Commun. Math. Phys. 353(2), 717–770 (2016). arXiv:1509.06568

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. Gajic, D.: Linear waves in the interior of extremal black holes II. Ann. Henri Poincaré 18, 4005–4081 (2017). arXiv:1512.08953

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. Gleeson, E.: Linear Instability of the Reissner–Nordström Cauchy Horizon. Master thesis (2017). arXiv:701.06668

  36. Hawking, S.W., Ellis, G.F.R.: The Large Scale Structure of Space-Time. Cambridge University Press, Cambridge (1975)

    MATH  Google Scholar 

  37. Hintz, P.: Boundedness and decay of scalar waves at the Cauchy horizon of the Kerr spacetime. Comment. Math. Helv. 92(4), 801–837 (2017). arXiv:1512.08003

    Article  MathSciNet  MATH  Google Scholar 

  38. Hintz, P., Vasy, A.: Analysis of linear waves near the Cauchy horizon of cosmological black holes. J. Math. Phys. 58(8), 081509 (2017). arXiv:1512.08004

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. Hintz, P., Vasy, A.: The global non-linear stability of the Kerr–de Sitter family of black holes. Acta Math. 220, 1–206 (2018). arXiv:1606.04014v1

    Article  MathSciNet  MATH  Google Scholar 

  40. Kerr, R.: Gravitational field of a spinning mass as an example of algebraically special metrics. Phys. Rev. Lett. 11, 237 (1963)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  41. Klainerman, S.: Brief history of the vector-field method (2010)

  42. Kommemi, J.: The global structure of spherically symmetric charged scalar field spacetimes. Ph.D thesis (2014)

  43. Luk, J.: A vector field method approach to improved decay for solutions to the wave equation on a slowly rotating Kerr black hole. Anal. PDE 5(3), 553–625 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  44. Luk, J.: On weak null singularities in general relativity. J. AMS 31, 1–63 (2018). arXiv:1311.4970v1

    MathSciNet  MATH  Google Scholar 

  45. Luk, J., Oh, S.-J.: Proof of linear instability of Reissner–Nordström Cauchy horizon under scalar perturbations. Duke Math. J. 166(3), 437–493 (2017). arXiv:1501.04598

    Article  MathSciNet  MATH  Google Scholar 

  46. Luk, J., Oh, S.-J.: Strong cosmic censorship in spherical symmetry for two-ended asymptotically flat initial data I. The interior of the black hole region. Ann. Math. 190(1), 1–111 (2019). arXiv:1702.05715

    Article  MathSciNet  MATH  Google Scholar 

  47. Luk, J., Oh, S.-J.: Strong cosmic censorship in spherical symmetry for two-ended asymptotically flat initial data II. The exterior of the black hole region. Ann. PDE, 5(6) (2019). arXiv:1702.05716

  48. Luk, J., Sbierski, J.: Instability results for the wave equation in the interior of Kerr black holes. J. Funct. Anal. 271(7), 1948–1995 (2016). arXiv:1512.08259

    Article  MathSciNet  MATH  Google Scholar 

  49. Metcalfe, J., Tataru, D., Tohaneanu, M.: Price’s law on nonstationary space-times. Adv. Math. 230, 995–1028 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  50. Moschidis, G.: The \(r^{p}\)-weighted energy method of Dafermos and Rodnianski in general asymptotically flat spacetimes and applications. Ann. PDE 2 (2015)

  51. Nicolas, J.-P.: Conformal scattering on the Schwarzschild metric (2013). arXiv:1312.1386 (to appear in Ann.  Inst.  Fourier)

  52. O’Neill, B.: The geometry of Kerr black holes. Dover Books on Physics. Courier Corporation, Chelmsford (1992)

    Google Scholar 

  53. Ori, A.: Inner structure of a charged black hole: an exact mass-inflation solution. Phys. Rev. Lett. 67, 789–792 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  54. Ori, A.: Structure of the singularity inside a realistic rotating black hole. Phys. Rev. Lett. 68, 2117–2120 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  55. Ori, A.: Perturbative approach to the inner structure of a rotating black hole. Gen. Relat. Gravit. 29(7), 881–929 (1997)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  56. Ori, A.: Evolution of scalar-field perturbations inside a Kerr black hole. Phys. Rev. D 58, 084016 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  57. Penrose, R.: Singularities and time-asymmetry. In: Hawking, S., Israel, W. (eds.) General Relativity, an Einstein Century Survey, pp. 581–638. Cambridge University Press, Cambridge (1979)

    Google Scholar 

  58. Penrose, R., Walker, M.: On quadratic first integrals of the geodesic equations for type \(\left\lbrace 22\right\rbrace \) spacetimes. Commun. Math. Phys. 18, 265–274 (1970)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  59. Poisson, E., Israel, W.: Internal structure of black holes. Phys. Rev. D 41, 1796–1809 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  60. Pretorius, F., Israel, W.: Quasispherical light cones of the Kerr geometry. Class. Quant. Grav. 15, 2289–2301 (1998). arXiv:gr-qc/9803080

    Article  ADS  MATH  Google Scholar 

  61. Schlue, V.: Decay of linear waves on higher-dimensional Schwarzschild black holes. Anal. PDE 6(3), 515–600 (2010). arXiv:1012.5963

    Article  MathSciNet  MATH  Google Scholar 

  62. Shlapentokh-Rothman, Y.: Quantitative mode stability for the wave equation on the Kerr spacetime. Annales Henri Poincaré 16, 289–345 (2014). arXiv:1302.6902

    Article  ADS  MathSciNet  MATH  Google Scholar 

  63. Simpson, M., Penrose, R.: Internal instability in a Reissner–Nordström black hole. Int. J. Theor. Phys. 17(3), 183–197 (1973)

    Article  Google Scholar 

  64. Tataru, D., Tohaneanu, M.: Local energy estimate on Kerr black hole backgrounds. IMRN 2, 248–292 (2011)

    MathSciNet  MATH  Google Scholar 

  65. Taylor, M.E.: Partial Differential Equations I, Basic Theory. Springer, Berlin (2010)

    Google Scholar 

  66. Poisson, E.: A Relativist’s Toolkit. Cambridge University Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  67. Van de Moortel, M.: Stability and instability of the sub-extremal Reissner–Nordström black hole interior for the Einstein–Maxwell–Klein–Gordon equations in spherical symmetry. CommUN. Math. Phys. 360(1), 103–168 (2018)

    Article  ADS  MATH  Google Scholar 

  68. Whiting, B.F.: Mode stability of the Kerr black hole. J. Math. Phys. 30(6), 1301–1305 (1989)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

I wish to express my gratitude toward Mihalis Dafermos for inspiring this problem and for comments on the manuscript. Further, I would like to thank Pedro Girão and José Natário for sharing their insights that helped me completing this work. I also benefited from discussions with Dejan Gajic, Philipp Kuhn, George Moschidis and Sashideep Gutti. This work was partially supported by FCT/Portugal through UID/MAT/04459/2013, Grant (GPSEinstein) PTDC/MAT-ANA/1275/2014 and SFRH/BPD/115959/2016.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anne T. Franzen.

Additional information

Communicated by Mihalis Dafermos.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: The K-current

In order to compute all scalar currents according to (16) in (uv) coordinates, we first derive the components of the deformation tensor which is given by

$$\begin{aligned} (\pi ^X)^{\mu \nu }=\frac{1}{2}(g^{\mu \lambda }\partial _{\lambda }X^{\nu }+g^{\nu \sigma }\partial _{\sigma }X^{\mu }+g^{\mu \lambda }g^{\nu \sigma }g_{\lambda \sigma , \delta }X^{\delta }), \end{aligned}$$
(A1)

where X is an arbitrary vector field, \(X=X^u \partial _u+X^v \partial _v+X^{\theta _C}\partial _{\theta _C}\), with \(X^u\), \(X^v\) and \(X^{\theta _C}\) depending on \(u,v,\theta ^{\star }, \tilde{\phi }\). From this, we obtain

$$\begin{aligned} (\pi ^X)^{v v}= & {} -\frac{1}{2\Omega ^2}\partial _u X^v, \end{aligned}$$
(A2)
$$\begin{aligned} (\pi ^X)^{u u}= & {} -\frac{1}{2\Omega ^2}\partial _v X^u, \end{aligned}$$
(A3)
$$\begin{aligned} (\pi ^X)^{u v}= & {} -\frac{1}{4\Omega ^2}\left[ \partial _uX^u+\partial _vX^v\right] -\frac{1}{2\Omega ^2} \frac{\partial _{\eta } \Omega }{\Omega }X^{\eta } , \end{aligned}$$
(A4)
$$\begin{aligned} (\pi ^X)^{v {\theta _C}}= & {} -\frac{1}{4\Omega ^2}\partial _uX^{\theta _C}-\frac{b^{\theta _C}}{4\Omega ^2}\partial _uX^v +\frac{1}{2} (\not g\,^{-1})^{{\theta _C}{\theta _D}}\partial _{\theta _D} X^v , \end{aligned}$$
(A5)
$$\begin{aligned} (\pi ^X)^{u {\theta _C}}= & {} -\frac{b^{\theta _D}}{4\Omega ^2}\partial _{{\theta _D}}X^{\theta _C}-\frac{1}{4\Omega ^2}\partial _v X^{\theta _C}-\frac{b^{\theta _C}}{4\Omega ^2}\partial _uX^u+\frac{1}{2} (\not g\,^{-1})^{{\theta _C}{\theta _D}}\partial _{\theta _D} X^u \nonumber \\&-\frac{b^{\theta _C}}{2\Omega ^2}\frac{\partial _{\eta } \Omega }{\Omega }X^{\eta } +\frac{\delta ^{\theta _C}_{\; \; \tilde{\phi }}}{4\Omega ^2}\partial _{\eta }b^{\tilde{\phi }} X^{\eta }, \end{aligned}$$
(A6)
$$\begin{aligned} (\pi ^X)^{{\theta _C} {\theta _D}}= & {} -\frac{b^{\theta _C}}{4\Omega ^2}\partial _u X^{\theta _D}+ \frac{1}{2}(\not g\,^{-1})^{{\theta _C}{\theta _A}}\partial _{{\theta _A}}X^{\theta _D}\nonumber \\&-\frac{b^{\theta _D}}{4\Omega ^2}\partial _u X^{\theta _C}+ \frac{1}{2}(\not g\,^{-1})^{{\theta _D}{\theta _A}}\partial _{{\theta _A}}X^{\theta _C}\nonumber \\&+\frac{1}{2} (\not g\,^{-1})^{{\theta _C}{\theta _A}}(\not g\,^{-1})^{{\theta _D}{\theta _B}}\partial _{\eta } \not g\,_{{\theta _A}{\theta _B}} X^{\eta }, \end{aligned}$$
(A7)

with \(A,B,C,D=1,2\), \(\theta _1=\theta ^{\star }\), \(\theta _2=\tilde{\phi }\) ,\(\zeta =u,v\) and \(\eta =u,v,\theta ^{\star }, \tilde{\phi }\). From (10), we calculate the components of the energy momentum tensor in (uv) coordinates as

$$\begin{aligned} T^{KG}_{v v}= & {} (\partial _v \psi )^2+\frac{1}{2}|b|^2\left( \frac{1}{\Omega ^2}(\partial _u\psi )( \partial _v \psi +{b^{\theta _C}}\partial _{{\theta _C}} \psi )-|\not \nabla /\,\psi |^2\right) ,\end{aligned}$$
(A8)
$$\begin{aligned} T^{KG}_{u u}= & {} (\partial _u \psi )^2,\end{aligned}$$
(A9)
$$\begin{aligned} T^{KG}_{u v}= & {} T^{KG}_{v u}=\Omega ^2|\not \nabla /\,\psi |^2-{b^{\theta _C}}(\partial _u\psi \partial _{{\theta _C}} \psi ),\end{aligned}$$
(A10)
$$\begin{aligned} T^{KG}_{v {\theta _C}}= & {} (\partial _v \psi \partial _{{\theta _C}} \psi )-\frac{b_{\theta _C}}{2}\left( \frac{1}{\Omega ^2}(\partial _u\psi )( \partial _v \psi +{b^{\theta _D}}\partial _{{\theta _D}} \psi )-|\not \nabla /\,\psi |^2\right) ,\end{aligned}$$
(A11)
$$\begin{aligned} T^{KG}_{u {\theta _C}}= & {} (\partial _u \psi \partial _{{\theta _C}} \psi ),\end{aligned}$$
(A12)
$$\begin{aligned} T^{KG}_{{\theta _C} {\theta _D}}= & {} (\partial _{{\theta _C}} \psi \partial _{{\theta _D}} \psi )+\frac{1}{2}\not g\,_{{\theta _C}{\theta _D}}\left( \frac{1}{\Omega ^2}(\partial _u\psi )( \partial _v \psi +{b^{\theta _A}} \partial _{{\theta _A}} \psi )-|\not \nabla /\,\psi |^2 \right) ,\nonumber \\ \end{aligned}$$
(A13)

with \(b^{\theta _C}b_{\theta _C}=|b|^2\) and \(\not g\,_{{\theta _C}{\theta _D}}b^{\theta _D}=b_{\theta _C}\).

Multiplying the components according to (16) in Eddington–Finkelstein-like coordinates, we get

$$\begin{aligned} K^X= & {} -\left[ \frac{1}{2\Omega ^2}\partial _u X^v \right] (\partial _v \psi )^2\nonumber \\&-\left[ \frac{1}{2\Omega ^2}\partial _v X^u \right] (\partial _u \psi )^2\nonumber \\&+\left[ -\frac{\partial _{\eta } X^{\eta }}{2}-\frac{{\partial _{\theta _C} X^{\theta _C}}}{2} -\frac{\partial _{\eta } \Omega }{\Omega } X^{\eta } \right. \nonumber \\&\left. -\frac{1}{4} (\not g\,^{-1})^{{\theta _C}{\theta _D}}\partial {\eta }\not g\,_{{\theta _C}{\theta _D}}X^{\eta }+\frac{b^{\tilde{\phi }}}{2}\partial _{\tilde{\phi }} X^v \right] |\not \nabla /\,\psi |^2\nonumber \\&+\left[ {\partial _{\theta _C} X^{\theta _C}}+ \frac{1}{4} (\not g\,^{-1})^{{\theta _C}{\theta _D}}\partial {\eta }\not g\,_{{\theta _C}{\theta _D}}X^{\eta } \right. \nonumber \\&\left. -\frac{b^{\tilde{\phi }}\partial _{\tilde{\phi }} X^v}{2}\right] \frac{1}{\Omega ^2}(\partial _u \psi )(\partial _v \psi +b^{\tilde{\phi }}\partial _{\tilde{\phi }}\psi )\nonumber \\&+\left[ -\frac{b^{\tilde{\phi }}}{2\Omega ^2}\partial _{{\tilde{\phi }}}X^{\theta _C}-\frac{1}{2\Omega ^2}\partial _v X^{\theta _C}-\frac{b^{\theta _C}}{2\Omega ^2}\partial _u X^u+ (\not g\,^{-1})^{{\theta _C}{\theta _D}}\partial _{\theta _D} X^u\right. \nonumber \\&\left. -\frac{b^{\theta _C}}{\Omega ^2}\frac{\partial _{\eta } \Omega }{\Omega }X^{\eta } +\frac{\delta ^{\theta _C}_{\; \; \tilde{\phi }}}{2\Omega ^2}\partial _{\eta }b^{\tilde{\phi }} X^{\eta } \right] (\partial _u \psi \partial _{{\theta _C}} \psi )\nonumber \\&+\left[ -\frac{1}{2\Omega ^2}\partial _uX^{{\theta _C}}-\frac{b^{\theta _C}}{2\Omega ^2}\partial _uX^{v}+ (\not g\,^{-1})^{{\theta _C}{\theta _D}}\partial _{\theta _D} X^v \right] (\partial _v \psi \partial _{{\theta _C}} \psi )\nonumber \\&+\left[ -\frac{b^{\theta _C}}{4\Omega ^2}\partial _uX^{\theta _D}-\frac{b^{\theta _D}}{4\Omega ^2}\partial _uX^{\theta _C}+\frac{1}{2} (\not g\,^{-1})^{{\theta _C}{\theta _A}}\partial _{\theta _A} X^{\theta _D} \right. \nonumber \\&+\frac{1}{2} (\not g\,^{-1})^{{\theta _D}{\theta _A}}\partial _{\theta _A} X^{\theta _C}\nonumber \\&+\left. \frac{1}{2}(\not g\,^{-1})^{{\theta _C}{\theta _A}}(\not g\,^{-1})^{{\theta _D}{\theta _B}}\partial {\eta }\not g\,_{{\theta _A}{\theta _B}}X^{\eta } \right] (\partial _{{\theta _C}} \psi \partial _{{\theta _D}} \psi ), \end{aligned}$$
(A14)

also recall (93).

Appendix B: The J-currents and Normal Vectors

For the J-currents, according to Eq. (13), we obtain

$$\begin{aligned} J^X_{\mu }n^{\mu }_{v=\mathrm{const}}= & {} \frac{1}{2\Omega ^2}\left[ X^u(\partial _u \psi )^2{+}[X^{\theta _C}{-}X^vb^{\theta _C}](\partial _u\psi \partial _{{\theta _C}} \psi )+ \Omega ^2 X^v|\not \nabla /\,\psi |^2\right] , \nonumber \nonumber \\ \end{aligned}$$
(B1)
$$\begin{aligned} J^X_{\mu }n^{\mu }_{u=\mathrm{const}}= & {} \frac{1}{2\Omega ^2}\left[ X^v(\partial _v\psi )^2 +\left[ X^{\theta _C}+ X^vb^{\theta _C}\right] (\partial _v\psi \partial _{{\theta _C}} \psi )\right. \nonumber \\&+{b^{\theta _C}}X^{\theta _D}(\partial _{{\theta _C}}\psi \partial _{{\theta _D}} \psi )\left. +X^u{\Omega ^2}|\not \nabla /\,\psi |^2\right] , \end{aligned}$$
(B2)
$$\begin{aligned} J^X_{\mu }n^{\mu }_{r^{\star }=\mathrm{const}}= & {} \frac{1}{\sqrt{2\Omega ^2}}\left[ X^v(\partial _v\psi )^2 + X^u(\partial _u \psi )^2+[X^{\theta _C}-X^vb^{\theta _C}](\partial _u\psi \partial _{{\theta _C}} \psi ) \right. \nonumber \\&\left. +\left[ X^{\theta _C}+ X^vb^{\theta _C}\right] (\partial _v\psi \partial _{{\theta _C}} \psi )+{b^{\theta _C}}X^{\theta _D}(\partial _{{\theta _C}}\psi \partial _{{\theta _D}} \psi )\right. \nonumber \\&\left. +\left( X^u+X^v\right) {\Omega ^2}|\not \nabla /\,\psi |^2\right] . \end{aligned}$$
(B3)

The normal vectors \(n^{\mu }_{u=\mathrm{const}}\) and \(n^{\mu }_{v=\mathrm{const}}\) are already stated in (76) and (75), respectively. Further, we have

$$\begin{aligned} n^{\mu }_{r^{\star }=\mathrm{const}}= & {} \frac{1}{\sqrt{2\Omega ^2}}(\partial _u+\partial _v+b^{\theta _C}\partial _{\theta _C}). \end{aligned}$$
(B4)

Moreover, note that for large v the current \(J^X_{\mu }n^{\mu }_{\gamma }\) approximates \(J^X_{\mu }n^{\mu }_{r^{\star }=\mathrm{const}}\) and likewise the normal vector \(n^{\mu }_{\gamma }\) approximates \(n^{\mu }_{r^{\star }=\mathrm{const}}\), where \(\gamma \) is as defined in Sect. 4.3.1.

Appendix C: The Redshift Vector Field

We construct the redshift vector field by defining

$$\begin{aligned} N=N^u \partial _u+N^v (\partial _v+b^{\tilde{\phi }}\partial _{\tilde{\phi }}), \end{aligned}$$
(C1)

where \(N^u\) and \(N^v\) depend on \((u,v,\theta ^{\star })\). We further require that N is timelike so that we have the condition

$$\begin{aligned} g(N,N)<0. \end{aligned}$$
(C2)

From the above, we obtain that \(N^u\) and \(N^v\) have to have the same sign and should be positive, so that the vector field is future-directed. Moreover, we have already introduced the vector field \(T_{{{\mathcal {H}}}^+}\) in the end of Sect. 2.2.1, see (32). Adjusting to our coordinates, the vector field

$$\begin{aligned} T_{{{\mathcal {H}}}^+}=\frac{\partial _v}{2}-\frac{\partial _u}{2}+\omega _+ \partial _{\tilde{\phi }} \end{aligned}$$
(C3)

satisfies the condition of being null at \({{\mathcal {H}}}^+\), spacelike in the interior and timelike in the exterior. The constant \(\omega _+\) is defined by \(\omega _B\), see Eq. (51), evaluated at \(r=r_+\). We can now choose N such that

$$\begin{aligned} g(N,T_{{{\mathcal {H}}}^+})|_{{{\mathcal {H}}}^+}=-2. \end{aligned}$$
(C4)

Further, we use (A14) to calculate

$$\begin{aligned} K^N= & {} -\left[ \frac{1}{2\Omega ^2}\partial _u N^v \right] (\partial _v \psi )^2\nonumber \\&-\left[ \frac{1}{2\Omega ^2}\partial _v N^u \right] (\partial _u \psi )^2\nonumber \\&+\left[ -\frac{\partial _{u} N^{u}}{2}-\frac{\partial _{v} N^{v}}{2} -\frac{\partial _{u} \Omega }{\Omega } N^{u}-\frac{\partial _{v} \Omega }{\Omega } N^{v}\right. \nonumber \\&\left. -\frac{1}{4} (\not g\,^{-1})^{{\theta _C}{\theta _D}}\left( \partial _{u}\not g\,_{{\theta _C}{\theta _D}}N^{u}+\partial _{v}\not g\,_{{\theta _C}{\theta _D}}N^{v}\right) \right] |\not \nabla /\,\psi |^2\nonumber \\&+\left[ \frac{1}{4} (\not g\,^{-1})^{{\theta _C}{\theta _D}}\left( \partial _{u}\not g\,_{{\theta _C}{\theta _D}}N^{u}+\partial _{v}\not g\,_{{\theta _C}{\theta _D}}N^{v}\right) \right] \frac{1}{\Omega ^2}(\partial _u \psi )(\partial _v \psi +b^{\tilde{\phi }}\partial _{\tilde{\phi }}\psi )\nonumber \\&+\left[ -\frac{b^{\tilde{\phi }}}{2\Omega ^2}\left( \partial _v N^v +\partial _u N^u\right) + (\not g\,^{-1})^{{\tilde{\phi }}\theta ^{\star }} \partial _{\theta ^{\star }}N^u -\frac{b^{\tilde{\phi }}}{\Omega ^2}\left[ \frac{\partial _u \Omega }{\Omega }N^u+\frac{\partial _v \Omega }{\Omega }N^v\right] \right. \nonumber \\&\left. +\frac{1}{2\Omega ^2}\partial _u b^{\tilde{\phi }} N^u\right] (\partial _u \psi \partial _{\tilde{\phi }} \psi )\nonumber \\&+\left[ (\not g\,^{-1})^{\theta ^{\star } \theta ^{\star }} \partial _{\theta ^{\star }}N^u \right] (\partial _u \psi \partial _{\theta ^{\star }} \psi )\nonumber \\&+\left[ -\frac{1}{2\Omega ^2} \partial _v(N^v b^{\tilde{\phi }}) -\frac{b^{\tilde{\phi }}}{2\Omega ^2}\partial _u N^v+ (\not g\,^{-1})^{{\tilde{\phi }}\theta ^{\star }} \partial _{\theta ^{\star }}N^v\right] (\partial _v \psi \partial _{\tilde{\phi }} \psi )\nonumber \\&+\left[ (\not g\,^{-1})^{\theta ^{\star }\theta ^{\star }} \partial _{\theta ^{\star }}N^v\right] (\partial _v \psi \partial _{\theta ^{\star }} \psi )\nonumber \\&+\left[ -\frac{b^{\tilde{\phi }}}{2\Omega ^2}\partial _u\left( N^vb^{\tilde{\phi }}\right) +(\not g\,^{-1})^{{\tilde{\phi }} \theta ^{\star }}\partial _{\theta ^{\star }}\left( N^vb^{\tilde{\phi }}\right) \right. \nonumber \\&\left. + \frac{1}{2}(\not g\,^{-1})^{{\tilde{\phi }}{\theta _C}}(\not g\,^{-1})^{{\tilde{\phi }}{\theta _D}}\left( \partial _{u}\not g\,_{{\theta _C}{\theta _D}}N^{u}+\partial _{v}\not g\,_{{\theta _C}{\theta _D}}N^{v}\right) \right] (\partial _{\tilde{\phi }} \psi )^2\nonumber \\&+\left[ \frac{1}{2}(\not g\,^{-1})^{{\theta ^{\star }}{\theta _C}}(\not g\,^{-1})^{{\theta ^{\star }}{\theta _D}}\left( \partial _{u}\not g\,_{{\theta _C}{\theta _D}}N^{u}+\partial _{v}\not g\,_{{\theta _C}{\theta _D}}N^{v}\right) \right] (\partial _{\theta ^{\star }} \psi )^2\nonumber \\&+\left[ (\not g\,^{-1})^{{\theta ^{\star }}{\theta ^{\star }}}\partial _{\theta ^{\star }}\left( N^vb^{\tilde{\phi }}\right) + \frac{1}{2}(\not g\,^{-1})^{{\theta ^{\star }}{\theta _C}}(\not g\,^{-1})^{{\tilde{\phi }}{\theta _D}} \right. \nonumber \\&\left. \left( \partial _{u}\not g\,_{{\theta _C}{\theta _D}}N^{u}+\partial _{v}\not g\,_{{\theta _C}{\theta _D}}N^{v}\right) \right] \times (\partial _{\theta ^{\star }} \psi \partial _{\tilde{\phi }} \psi ). \end{aligned}$$
(C5)

Recall Paragraph 2.2.5 which showed that derivatives of the metric coefficients can be bounded by \(\Delta \) which is zero at \({{\mathcal {H}}}^+\). The same holds for derivatives of \(b^{\tilde{\phi }}\). With the choice \(N^u, N^v\) positive, \(\partial _u N^u\) negative and with large absolute value and \(\partial _u N^v\) negative and with big enough absolute value we can prove Proposition 4.1 and Lemma 4.3. This can be seen from noticing that all dominating terms are rendered positive, remember (107) and applying the Cauchy–Schwarz inequality.

Appendix D: Commutators

The following proposition was already proven in [23] and can also be found in [1] Section 6.2. For the sake of completeness, we will briefly repeat it here.

Proposition 6.8

Let \(\psi \) be a solution of the scalar wave equation

$$\begin{aligned} \Box _g \psi =f, \end{aligned}$$
(D1)

and Y be an arbitrary vector field. Then

$$\begin{aligned} \Box _g(Y\psi )= & {} Y(f)+2(\pi ^Y)^{\alpha \beta }\nabla _{\alpha }\nabla _{\beta }\psi +2\nabla ^{\alpha }(\pi ^Y)_{\alpha \mu }\nabla ^{\mu }\psi \nonumber \\&-\nabla _{\mu }(\pi ^Y)_{~\alpha }^{\alpha }\nabla ^{\mu }\psi . \end{aligned}$$
(D2)

Proof

First we state

$$\begin{aligned} Y(\Box _g \psi )= & {} {{\mathcal {L}}}_Y(g^{\alpha \beta }\nabla _{\alpha }\nabla _{\beta }\psi )=-2(\pi ^Y)^{\alpha \beta }\nabla _{\alpha }\nabla _{\beta }\psi \nonumber \\&+g^{\alpha \beta }{{\mathcal {L}}}_Y(\nabla _{\alpha }\nabla _{\beta } \psi )=Y(f), \end{aligned}$$
(D3)
$$\begin{aligned} {{\mathcal {L}}}_Y(\nabla _{\alpha }\nabla _{\beta } \psi )-\nabla _{\alpha }{{\mathcal {L}}}_Y\nabla _{\beta } \psi= & {} \left[ (\nabla _{\beta }(\pi ^Y)_{\alpha \mu })-(\nabla _{\mu }(\pi ^Y)_{\beta \alpha })\right. \nonumber \\&\left. +(\nabla _{\alpha }(\pi ^Y)_{\mu \beta })\right] \nabla ^{\mu }\psi , \end{aligned}$$
(D4)
$$\begin{aligned} {{\mathcal {L}}}_Y\nabla _{\beta } \psi= & {} \nabla _{Y}\nabla _{\beta } \psi +\nabla _{\beta }Y^{\mu }\nabla _{\mu } \psi =\nabla _{\beta }(Y\psi ). \end{aligned}$$
(D5)

Now we use Eq. (D5) in (D4) and the result of that in (D3). It then only remains to solve the equation for \(\Box _g(Y\psi )\) to obtain (D2). \(\square \)

Appendix E: Error Terms

In order to prove pointwise boundedness, we need to commute twice with all angular operators, as explained in Sect. 2.2.6, which are unfortunately not all Killing. Therefore, we are interested in the error term

$$\begin{aligned} {{\mathcal {E}}}^V(Y^k\psi )=\Box _g(Y^k \psi ) V(Y^k\psi ), \end{aligned}$$
(E1)

resulting from commutation with the vector field Y as defined in (94), according to (17) and with \(k=1,2\). To analyze this further, recall the second term of the right-hand side of (D2) and notice that the higher-order terms of the error terms are defined by the following:

$$\begin{aligned} (\pi ^Y)^{vv}= & {} (\pi ^Y)^{u u}=(\pi ^Y)^{v{\theta _C}}=0, \end{aligned}$$
(E2)
$$\begin{aligned} (\pi ^Y)^{uv}= & {} -\frac{1}{2\Omega ^2} \frac{\partial _{\theta ^{\star }} \Omega }{\Omega }Y^{\theta ^{\star }} , \end{aligned}$$
(E3)
$$\begin{aligned} (\pi ^Y)^{u {\theta _C}}= & {} -\frac{b^{\tilde{\phi }}}{4\Omega ^2} \partial _{\tilde{\phi }}Y^{\theta _C} -\frac{b^{\theta _C}}{2\Omega ^2}\frac{\partial _{\theta ^{\star }} \Omega }{\Omega }Y^{\theta ^{\star }} \nonumber \\&+\frac{1}{4\Omega ^2}(\not g\,^{-1})^{{\theta _C}{\theta _D}} \partial _{\theta ^{\star }}b_{\theta _D} Y^{\theta ^{\star }}\nonumber \\&-\frac{b^{\theta _D}}{4\Omega ^2}(\not g\,^{-1})^{{\theta _C}{\theta _A}} \partial _{\theta ^{\star }}\not g\,_{{\theta _D}{\theta _A}} Y^{\theta ^{\star }}, \end{aligned}$$
(E4)
$$\begin{aligned} (\pi ^Y)^{{\theta _C} {\theta _D}}= & {} \frac{1}{2}(\not g\,^{-1})^{{\theta _C} {\theta _A}}\partial _{{\theta _A}}Y^{\theta _D} + \frac{1}{2}(\not g\,^{-1})^{{\theta _C}{\theta _D}} \partial _{{\theta _A}}Y^{\theta _C}\nonumber \\&+\frac{1}{2} (\not g\,^{-1})^{{\theta _C}{\theta _A}} (\not g\,^{-1})^{{\theta _D}{\theta _B}}\partial _{\theta ^{\star }} \not g\,_{{\theta _A}{\theta _B}} Y^{\theta ^{\star }}, \end{aligned}$$
(E5)

where Y is as in Sect. 2.2.6. Only \((\pi ^Y)^{vv}, (\pi ^Y)^{uu}\) and \((\pi ^Y)^{v\theta _C}\) are zero and all other terms will contribute to the error terms. In particular, we obtain a \((\partial _u \partial _v \psi )\)-term as can be seen from (D2) together with (E3E4). We control this by using the wave equation itself. See Appendix F, Eq. (F5) and substitute the expression, so that as a general structure we get all first- to third-order terms except the \((\partial _u \partial _v \psi )\)-term, namely

$$\begin{aligned}{}[\Box _g, Y^k \psi ]= & {} \sum \limits ^4_{i=1} \sum \limits ^2_{l=0} \sum \limits ^2_{m=0} E^{lm}_i(\partial _{{\eta }_i} \partial _{\tilde{\phi }}^l\partial _{\theta ^{\star }}^m \psi ), \qquad l+m \le k, \end{aligned}$$
(E6)

where \(\eta _{i}= u,v, {\tilde{\phi }},{\theta ^{\star }}\) and all coefficients \(E^{lm}_i\) are bounded, as can be seen with the help of (D2) and Sect. 2.2.5.

Appendix F: The Wave Equation and Higher Derivatives

The wave on fixed background is given by

$$\begin{aligned} \Box _g \psi =\frac{1}{\sqrt{-g}} \frac{\partial }{\partial x^{\mu }}\left( g^{\mu \nu }\sqrt{-g}\frac{\partial \psi }{\partial x^{\nu }}\right) , \end{aligned}$$
(F1)

where \(\sqrt{-g}=2\Omega ^2L\sin \theta \). Therefore, the wave equation in Eddington–Finkelstein-like coordinates on fixed Kerr background yields

$$\begin{aligned} \Box _g \psi= & {} \frac{1}{2\Omega ^2}\left[ -\frac{\partial _u |L\sin \theta |}{|L\sin \theta |}\partial _v \psi -\frac{\partial _v |L\sin \theta |}{|L\sin \theta |}\partial _u \psi -\frac{\partial _u |b^{\tilde{\phi }}L\sin \theta |}{|L\sin \theta |}\partial _{\tilde{\phi }} \psi \right] \nonumber \\&-\frac{1}{\Omega ^2}\partial _u\partial _v \psi -\frac{b^{\tilde{\phi }}}{\Omega ^2}\partial _u\partial _{\tilde{\phi }} \psi +\not \Delta \,\psi \nonumber \\&+\frac{2\partial _{\theta ^{\star }}\Omega }{\Omega }\left[ \frac{R^2}{L^2}\partial _{\theta ^{\star }}\psi -\left( \frac{\partial h}{\partial \theta ^{\star }}\right) \frac{R^2}{L^2}\partial _{\tilde{\phi }}\psi \right] =0, \end{aligned}$$
(F2)

where

$$\begin{aligned} \not \Delta \,\psi =\frac{1}{\sqrt{-\not g\,}} \frac{\partial }{\partial x^{{\theta _C}}}\left( \not g\,^{{\theta _C} {\theta _D}}\sqrt{-\not g\,}\frac{\partial \psi }{\partial x^{{\theta _D}}}\right) , \end{aligned}$$
(F3)

with \(\sqrt{-\not g\,}=L\sin \theta \) and \(C,D=1,2\) and \(\theta _1=\theta ^{\star }\), \(\theta _2=\tilde{\phi }\). So we get

$$\begin{aligned} \not \Delta \,\psi= & {} \frac{\partial _{\theta ^{\star }}|L\sin \theta |}{|L\sin \theta |}\left[ \frac{R^2}{L^2}\partial _{\theta ^{\star }}\psi -\left( \frac{\partial h}{\partial \theta ^{\star }}\right) \frac{R^2}{L^2}\partial _{\tilde{\phi }}\psi \right] \nonumber \\&+\partial _{\theta ^{\star }}\left( \frac{R^2}{L^2}\right) \partial _{\theta ^{\star }}\psi -\partial _{\theta ^{\star }}\left[ \left( \frac{\partial h}{\partial \theta ^{\star }}\right) \frac{R^2}{L^2}\right] \partial _{\tilde{\phi }}\psi \nonumber \\&+\frac{R^2}{L^2}\partial _{\theta ^{\star }}\partial _{\theta ^{\star }}\psi -2\left( \frac{\partial h}{\partial \theta ^{\star }}\right) \frac{R^2}{L^2}\partial _{\theta ^{\star }}\partial _{\tilde{\phi }}\psi \nonumber \\&+\left( \frac{1}{R^2\sin \theta }+\left( \frac{\partial h}{\partial \theta ^{\star }}\right) \frac{R^2}{L^2}\right) \partial _{\tilde{\phi }}\partial _{\tilde{\phi }}\psi . \end{aligned}$$
(F4)

Solving (F2) to

$$\begin{aligned} \frac{1}{\Omega ^2}\partial _u\partial _v \psi +\frac{b^{\tilde{\phi }}}{\Omega ^2}\partial _u\partial _{\tilde{\phi }} \psi= & {} \frac{1}{2\Omega ^2}\left[ -\frac{\partial _u |L\sin \theta |}{|L\sin \theta |}\partial _v \psi -\frac{\partial _v |L\sin \theta |}{|L\sin \theta |}\partial _u \psi \right. \nonumber \\&\left. -\frac{\partial _u |b^{\tilde{\phi }}L\sin \theta |}{|L\sin \theta |}\partial _{\tilde{\phi }} \psi \right] \nonumber \\&+\not \Delta \,\psi +\frac{2\partial _{\theta ^{\star }}\Omega }{\Omega } \left[ \frac{R^2}{L^2}\partial _{\theta ^{\star }}\psi -\left( \frac{\partial h}{\partial \theta ^{\star }}\right) \frac{R^2}{L^2}\partial _{\tilde{\phi }}\psi \right] ,\nonumber \\ \end{aligned}$$
(F5)

will enable us to control the mixed term \(\partial _u\partial _v \psi \) by using the right-hand side of the equation, once it is shown that all coefficients are bounded. This will be needed in order to estimate error terms.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Franzen, A.T. Boundedness of Massless Scalar Waves on Kerr Interior Backgrounds. Ann. Henri Poincaré 21, 1045–1111 (2020). https://doi.org/10.1007/s00023-020-00900-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00023-020-00900-w

Navigation