Skip to main content
Log in

New Convergence Results for Inertial Krasnoselskii–Mann Iterations in Hilbert Spaces with Applications

  • Published:
Results in Mathematics Aims and scope Submit manuscript

Abstract

We consider inertial iteration methods for Fermat–Weber location problem and primal–dual three-operator splitting in real Hilbert spaces. To do these, we first obtain weak convergence analysis and nonasymptotic O(1/n) convergence rate of the inertial Krasnoselskii–Mann iteration for fixed point of nonexpansive operators in infinite dimensional real Hilbert spaces under some seemingly easy to implement conditions on the iterative parameters. One of our contributions is that the convergence analysis and rate of convergence results are obtained using conditions which appear not complicated and restrictive as assumed in other previous related results in the literature. We then show that Fermat–Weber location problem and primal–dual three-operator splitting are special cases of fixed point problem of nonexpansive mapping and consequently obtain the convergence analysis of inertial iteration methods for Fermat–Weber location problem and primal–dual three-operator splitting in real Hilbert spaces. Some numerical implementations are drawn from primal–dual three-operator splitting to support the theoretical analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Alvarez, F., Attouch, H.: An inertial proximal method for maximal monotone operators via discretization of a nonlinear oscillator with damping. Set-Valued Anal. 9, 3–11 (2001)

    Article  MathSciNet  Google Scholar 

  2. Attouch, H., Goudon, X., Redont, P.: The heavy ball with friction. I. The continuous dynamical system. Commun. Contemp. Math. 2(1), 1–34 (2000)

    Article  MathSciNet  Google Scholar 

  3. Attouch, H., Czarnecki, M.O.: Asymptotic control and stabilization of nonlinear oscillators with non-isolated equilibria. J. Differ. Equ. 179(1), 278–310 (2002)

    Article  MathSciNet  Google Scholar 

  4. Attouch, H., Peypouquet, J., Redont, P.: A dynamical approach to an inertial forward–backward algorithm for convex minimization. SIAM J. Optim. 24, 232–256 (2014)

    Article  MathSciNet  Google Scholar 

  5. Attouch, H., Peypouquet, J.: The rate of convergence of Nesterov’s accelerated forward–backward method is actually faster than \(\frac{1}{k^2}\). SIAM J. Optim. 26, 1824–1834 (2016)

    Article  MathSciNet  Google Scholar 

  6. Bauschke, H.H., Combettes, P.L.: Convex Analysis and Monotone Operator Theory in Hilbert Spaces. CMS Books in Mathematics, Springer, New York (2011)

    Book  Google Scholar 

  7. Bauschke, H.H., Burachik, R.S., Combettes, P.L., Elser, V., Luke, D.R., Wolkowicz, H., (Eds.).: Fixed-Point Algorithms for Inverse Problems in Science and Engineering, Springer Optimization and Its Applications, Vol. 49. Springer (2011)

  8. Beck, A., Teboulle, M.: A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J. Imaging Sci. 2(1), 183–202 (2009)

    Article  MathSciNet  Google Scholar 

  9. Beck, A., Sabach, S.: Weiszfeld’s method: old and new results. J. Optim. Theory Appl. 164, 1–40 (2015)

    Article  MathSciNet  Google Scholar 

  10. Berinde, V.: Iterative Approximation of Fixed Points. Lecture Notes in Mathematics, Vol. 1912. Springer, Berlin (2007)

  11. Bot, R.I., Csetnek, E.R., Hendrich, C.: Inertial Douglas–Rachford splitting for monotone inclusion problems. Appl. Math. Comput. 256, 472–487 (2015)

    MathSciNet  MATH  Google Scholar 

  12. Bot, R.I., Csetnek, E.R.: An inertial alternating direction method of multipliers. Minimax Theory Appl. 1, 29–49 (2016)

    MathSciNet  MATH  Google Scholar 

  13. Bot, R.I., Csetnek, E.R.: An inertial forward–backward–forward primal–dual splitting algorithm for solving monotone inclusion problems. Numer. Algorithm 71, 519–540 (2016)

    Article  MathSciNet  Google Scholar 

  14. Cegielski, A.: Iterative Methods for Fixed Point Problems in Hilbert Spaces. Lecture Notes in Mathematics, Vol. 2057. Springer, Berlin (2012)

  15. Chambolle, A., Pock, T.: On the ergodic convergence rates of a first-order primal–dual algorithm. Math. Program. 159, 253–287 (2016)

    Article  MathSciNet  Google Scholar 

  16. Chang, S.S., Cho, Y.J., Zhou, H. (eds.): Iterative Methods for Nonlinear Operator Equations in Banach Spaces. Nova Science, Huntington (2002)

    MATH  Google Scholar 

  17. Chen, C., Chan, R.H., Ma, S., Yang, J.: Inertial proximal ADMM for linearly constrained separable convex optimization. SIAM J. Imaging Sci. 8, 2239–2267 (2015)

    Article  MathSciNet  Google Scholar 

  18. Chidume, C.E.: Geometric Properties of Banach Spaces and Nonlinear Iterations. Lecture Notes in Mathematics, Vol. 1965. Springer, London (2009)

  19. Cho, Y.J., Kang, S.M., Qin, X.: Approximation of common fixed points of an infinite family of nonexpansive mappings in Banach spaces. Comput. Math. Appl. 56, 2058–2064 (2008)

    Article  MathSciNet  Google Scholar 

  20. Cominetti, R., Soto, J.A., Vaisman, J.: On the rate of convergence of Krasnoselski–Mann iterations and their connection with sums of Bernoullis. Isr. J. Math. 199, 757–772 (2014)

    Article  Google Scholar 

  21. Condat, L.: A direct algorithm for 1-d total variation denoising. IEEE Signal Process. Lett. 20, 1054–1057 (2013)

    Article  Google Scholar 

  22. Davis, D., Yin, W.: Convergence rate analysis of several splitting schemes. In: Glowinski, R., Osher, S., Yin, W. (eds.) Splitting Methods in Communication and Imaging, Science and Engineering, pp. 343–349. Springer, New York (2015)

    Google Scholar 

  23. Drezner, Z. (ed.): Facility Location, A Survey of Applications and Methods. Springer (1995)

  24. Genel, A., Lindenstrauss, J.: An example concerning fixed points. Isr. J. Math. 22, 81–86 (1975)

    Article  MathSciNet  Google Scholar 

  25. Goebel, K., Reich, S.: Uniform Convexity, Hyperbolic Geometry, and Nonexpansive Mappings. Marcel Dekker, New York (1984)

    MATH  Google Scholar 

  26. Kanzow, C., Shehu, Y.: Generalized Krasnoselskii–Mann-type iterations for nonexpansive mappings in Hilbert spaces. Comput. Optim. Appl. 67, 595–620 (2017)

    Article  MathSciNet  Google Scholar 

  27. Krasnoselskii, M.A.: Two remarks on the method of successive approximations. Uspekhi Mat. Nauk 10, 123–127 (1955)

    MathSciNet  Google Scholar 

  28. Liang, J., Fadili, J., Peyré, G.: Convergence rates with inexact non-expansive operators. Math. Program. Ser. A. 159, 403–434 (2016)

    Article  MathSciNet  Google Scholar 

  29. Lorenz, D.A., Pock, T.: An inertial forward–backward algorithm for monotone inclusions. J. Math. Imaging Vis. 51, 311–325 (2015)

    Article  MathSciNet  Google Scholar 

  30. Love, R.F., Morris, J.G., Wesolowsky, G.O.: Facilities Location. Models & Methods. Elsevier (1988)

  31. Maingé, P.E.: Regularized and inertial algorithms for common fixed points of nonlinear operators. J. Math. Anal. Appl. 344, 876–887 (2008)

    Article  MathSciNet  Google Scholar 

  32. Maingé, P.-E.: Convergence theorems for inertial KM-type algorithms. J. Comput. Appl. Math. 219(1), 223–236 (2008)

    Article  MathSciNet  Google Scholar 

  33. Mann, W.R.: Mean value methods in iteration. Bull. Am. Math. Soc. 4, 506–510 (1953)

    MathSciNet  MATH  Google Scholar 

  34. Matsushita, S.-Y.: On the convergence rate of the Krasnoselskii–Mann iteration. Bull. Aust. Math. Soc. 96, 162–170 (2017)

    Article  MathSciNet  Google Scholar 

  35. Ochs, P., Brox, T., Pock, T.: iPiasco: inertial proximal algorithm for strongly convex optimization. J. Math. Imaging Vis. 53, 171–181 (2015)

    Article  MathSciNet  Google Scholar 

  36. Opial, Z.: Weak convergence of the sequence of successive approximations for nonexpansive mappings. Bull. Am. Math. Soc. 73, 591–597 (1967)

    Article  MathSciNet  Google Scholar 

  37. Polyak, B.T.: Some methods of speeding up the convergence of iterative methods. Zh. Vychisl. Mat. Mat. Fiz. 4, 1–17 (1964)

    MathSciNet  Google Scholar 

  38. Reich, S.: Weak convergence theorems for nonexpansive mappings in Banach spaces. J. Math. Anal. Appl. 67, 274–276 (1979)

    Article  MathSciNet  Google Scholar 

  39. Shehu, Y.: Convergence rate analysis of inertial Krasnoselskii–Mann-type iteration with applications. Numer. Funct. Anal. Optim. 39, 1077–1091 (2018)

    Article  MathSciNet  Google Scholar 

  40. Yan, M.: A new primal–dual algorithm for minimizing the sum of three functions with a linear operator. J. Sci. Comput. 76, 1698–1717 (2018)

    Article  MathSciNet  Google Scholar 

  41. Yao, Y., Liou, Y.-C.: Weak and strong convergence of Krasnoselski–Mann iteration for hierarchical fixed point problems. Inverse Problems 24, 015015 (2008)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yekini Shehu.

Ethics declarations

Conflict of interest

Authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The research of this author is supported by the Postdoctoral Fellowship from Institute of Science and Technology (IST), Austria.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iyiola, O.S., Shehu, Y. New Convergence Results for Inertial Krasnoselskii–Mann Iterations in Hilbert Spaces with Applications. Results Math 76, 75 (2021). https://doi.org/10.1007/s00025-021-01381-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00025-021-01381-x

Keywords

Mathematics Subject Classification

Navigation