Skip to main content
Log in

Some Remarks on the Shifner-Erougin-Salakhova-Chebotarev Type Differential Equations

  • Published:
Results in Mathematics Aims and scope Submit manuscript

Abstract

This article studies a type of integrable linear ordinary differential equations considered by Shifner [17] and generalised by Erougin [5], Salakhova and Chebotarev [15]. We will consider a slight generalisation of their results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aslanyan, A.G., Burenkov, V.I.: Refinement of a theorem of V. V. Morozov. Differ. Uravn. 3(4), 687–691 (1967). (Russian)

    MathSciNet  Google Scholar 

  2. Aslanyan, A.G., Burenkov, V.I.: The integrability in quadratures of certain systems of linear differential equations. Differ. Uravn. 4(7), 1241–1249 (1968). (Russian)

    MathSciNet  Google Scholar 

  3. Białas, S., Białas, M.: An algorithm for the calculation of the minimal polynomial. Bull. Polish Acad. Sci. Tech. Sci. 56(4), 391–393 (2008)

    MATH  Google Scholar 

  4. Coddington, E.A., Carlson, R.: Linear ordinary differential equations. SIAM, Bangkok (1997)

    Book  Google Scholar 

  5. Erougin, N.: Une remarque sur l’article de L. Shifner. Izv. Akad. Nauk. SSSR Ser. Mat. 5(4), 377–380 (1941). (Russian)

    MathSciNet  MATH  Google Scholar 

  6. Golokvosčius, P.: Ordinary differential equations and differential operators. Lith. Math. J. 20(3), 225–235 (1980)

    Article  MathSciNet  Google Scholar 

  7. Horn, R.A., Johnson, C.R.: Matrix Analysis. Cambridge University Press, NY (1985)

    Book  Google Scholar 

  8. Jamiołkowski, A., Pastuszak, G.: Generalized Shemesh criterion, common invariant subspaces and irreducible completely positive superoperators. Linear Multilinear Algeb 63(2), 314–325 (2015)

    Article  MathSciNet  Google Scholar 

  9. Kalenova, V.I., Morozov, V.M.: Reducibility of linear time-varying systems of special form with control and measurements. J. Comput. Syst. Sci. Int. 58(1), 1–11 (2019)

    Article  Google Scholar 

  10. Marcus, M., Khan, N.A.: On matrix commutators. Can. J. Math. 12, 269–277 (1960)

    Article  MathSciNet  Google Scholar 

  11. McCoy, N.H.: On quasi-commutative matrices. Trans. Amer. Math. Soc. 36(2), 327–340 (1934)

    Article  MathSciNet  Google Scholar 

  12. Merkys, V.M.: On integration in closed form of certain linear systems of differential equations. Liet. Mat. Rynkinys 8(2), 289–295 (1968). (Russian)

    MathSciNet  Google Scholar 

  13. Merkys, V.M., Akutsevichyute, N.: On a system of differential equations, integrable in finite form. Liet. Mat. Rynkinys 9(3), 567–570 (1969). (Russian)

    Google Scholar 

  14. Morozov, V.V.: On a problem of N. P. Erugin. Izv. Vyssh. Uchebn. Zaved. Mat. 5, 171–173 (1959). (Russian)

    MATH  Google Scholar 

  15. Salakhova, I.M., Chebotarev, G.N.: Solvability in finite form of certain systems of differential equations. Izv. Vyssh. Uchebn. Zaved. Mat. 3, 230–234 (1960). (Russian)

    MathSciNet  MATH  Google Scholar 

  16. Shemesh, D.: Common eigenvectors of two matrices. Linear Algebra Appl. 62, 11–18 (1984)

    Article  MathSciNet  Google Scholar 

  17. Shifner, L.M.: Again on the integration of the differential systems. Izv. Akad. Nauk. SSSR Ser. Mat. 4(4–5), 417–422 (1940). (Russian)

    MathSciNet  MATH  Google Scholar 

  18. Shifner, L.M.: On the integration of some differential systems in finite form. Izv. Akad. Nauk SSSR Ser. Mat. 4(3), 341–348 (1940). (Russian)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author would like to express his gratitude for the reviewer’s helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takeo Kamizawa.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

In the appendix, we show Lemma 11 used in the main part.

Lemma 13

Let \(A_{k}=\left[ x_{j-i+1}^{\left( k\right) }+\left( i-1\right) \alpha _{j-i+1}^{\left( k\right) }\right] _{i\le j}\) for \(k=1,2\), where \(\alpha _{\ell }^{\left( k\right) },x_{\ell }^{\left( k\right) }\) are arbitrary numbers, and \(\left[ z_{ij}\right] _{i,j}=\left[ A_{1},A_{2}\right] \). Then,

$$\begin{aligned} z_{ij}&=\sum _{\ell =1}^{j-i+1}\left[ \left( \ell -1\right) \alpha _{j-i-\ell +2}^{\left( 2\right) }x_{\ell }^{\left( 1\right) }-\left( j-i-\ell +1\right) \alpha _{\ell }^{\left( 1\right) }x_{j-i-\ell +2}^{\left( 2\right) }\right] \nonumber \\&\quad +\left( i-1\right) \sum _{\ell =1}^{j-i+1}\left( i-j+2\ell -2\right) \alpha _{\ell }^{\left( 1\right) }\alpha _{j-i-\ell +2}^{\left( 2\right) }, \end{aligned}$$
(20)

for all ij such that \(i\le j\) (obviously \(z_{ij}=0\) for \(i>j\)). In particular,

$$\begin{aligned} z_{1j}=\sum _{\ell =1}^{j}\left[ \left( \ell -1\right) \alpha _{j-\ell +1}^{\left( 2\right) }x_{\ell }^{\left( 1\right) }-\left( j-\ell \right) \alpha _{\ell }^{\left( 1\right) }x_{j-\ell +1}^{\left( 2\right) }\right] . \end{aligned}$$
(21)

Proof

For \(i\le j\), one can easily compute

$$\begin{aligned} z_{ij}&=\left[ \sum _{\ell =i}^{j}\left\{ x_{\ell -i+1}^{\left( 1\right) }+\left( i-1\right) \alpha _{\ell -i+1}^{\left( 1\right) }\right\} \left\{ x_{j-\ell +1}^{\left( 2\right) }+\left( \ell -1\right) \alpha _{j-\ell +1}^{\left( 2\right) }\right\} \right] \\&-\left[ \sum _{\ell =i}^{j}\left\{ x_{\ell -i+1}^{\left( 2\right) }+\left( i-1\right) \alpha _{\ell -i+1}^{\left( 2\right) }\right\} \left\{ x_{j-\ell +1}^{\left( 1\right) }+\left( \ell -1\right) \alpha _{j-\ell +1}^{\left( 1\right) }\right\} \right] \\&=\sum _{\ell =i}^{j}\left[ \left( \ell -1\right) \alpha _{j-\ell +1}^{\left( 2\right) }x_{\ell -i+1}^{\left( 1\right) }-\left( i-1\right) \alpha _{\ell -i+1}^{\left( 2\right) }x_{j-\ell +1}^{\left( 1\right) }\right] \\&+\sum _{\ell =i}^{j}\left[ \left( i-1\right) \alpha _{\ell -i+1}^{\left( 1\right) }x_{j-\ell +1}^{\left( 2\right) }-\left( \ell -1\right) \alpha _{j-\ell +1}^{\left( 1\right) }x_{\ell -i+1}^{\left( 2\right) }\right] \\&+\sum _{\ell =i}^{j}\left[ \left( i-1\right) \left( \ell -1\right) \left\{ \alpha _{\ell -i+1}^{\left( 1\right) }\alpha _{j-\ell +1}^{\left( 2\right) }-\alpha _{j-\ell +1}^{\left( 1\right) }\alpha _{\ell -i+1}^{\left( 2\right) }\right\} \right] \\&=\sum _{\ell =1}^{j-i+1}\left[ \left( \ell -1\right) \alpha _{j-i-\ell +2}^{\left( 2\right) }x_{\ell }^{\left( 1\right) }-\left( j-i-\ell +1\right) \alpha _{\ell }^{\left( 1\right) }x_{j-i-\ell +2}^{\left( 2\right) }\right] \\&+\left( i-1\right) \sum _{\ell =1}^{j-i+1}\left( i-j+2\ell -2\right) \alpha _{\ell }^{\left( 1\right) }\alpha _{j-i-\ell +2}^{\left( 2\right) }. \end{aligned}$$

Indeed, if we put \(i=1\), we obtain

$$\begin{aligned} z_{1j}=\sum _{\ell =1}^{j}\left[ \left( \ell -1\right) \alpha _{j-\ell +1}^{\left( 2\right) }x_{\ell }^{\left( 1\right) }-\left( j-\ell \right) \alpha _{\ell }^{\left( 1\right) }x_{j-\ell +1}^{\left( 2\right) }\right] . \end{aligned}$$

The following statement is also easy to check.

Lemma 14

For \(1\le i,j\le n-1\) with \(i\le j\),

$$\begin{aligned} z_{\left( i+1\right) ,\left( j+1\right) }&=z_{ij}+\sum _{\ell =1}^{j-i+1}\left( i-j+2\ell -2\right) \alpha _{\ell }^{\left( 1\right) }\alpha _{j-i-\ell +2}^{\left( 2\right) }. \end{aligned}$$
(22)

Theorem 15

Consider two matrices \(A_{1},A_{2}\) in the McCoy’s form, i.e. \(A_{k}=\left[ x_{j-i+1}^{\left( k\right) }+\left( i-1\right) \alpha _{j-i+1}^{\left( k\right) }\right] _{i\le j}\) for \(k=1,2\). These matrices commute if and only if there exist some \(\xi \) (\(1\le \xi \le n\)) and r such that

$$\begin{aligned} \alpha _{\sigma }^{\left( 2\right) }&={\left\{ \begin{array}{ll} 0=\alpha _{\sigma }^{\left( 1\right) } &{} \left( \sigma =1,\ldots ,\xi -1\right) \\ r\alpha _{\sigma }^{\left( 1\right) } &{} \left( \sigma =\xi ,\ldots ,n-1\right) , \end{array}\right. } \end{aligned}$$
(23)

where \(\alpha _\xi ^{(1)} \ne 0\) (the roles of \(A_1\) and \(A_2\) shold be changed if \(\alpha _\xi ^{(1)}=0\) but \(\alpha _\xi ^{(2)}\ne 0\) for \(\xi <n\)), and

$$\begin{aligned} x_{\sigma }^{\left( 2\right) }=rx_{\sigma }^{\left( 1\right) }\left( \sigma =2,\ldots ,n-\xi +1\right) . \end{aligned}$$
(24)

(assuming that \(x_\sigma ^{(1)}\) and \(x_\sigma ^{(2)}\) are arbitrary for all \(\sigma =1,\ldots ,n\) if \(\xi =n\)).

Proof

It is easy to check directly from Lemma 13 that these matrices commute when (23) and (24) are satisfied. We show the converse in the following steps. Suppose \(A_{1}\) and \(A_{2}\) commute.

Step 1:

Assume that \(\alpha _{1}^{\left( 1\right) }\ne 0\). Then, one can inductively show that \(\alpha _{\sigma }^{\left( 2\right) }=r\alpha _{\sigma }^{\left( 1\right) }\) for all \(\sigma \), where \(r=\left( \alpha _{1}^{\left( 2\right) }/\alpha _{1}^{\left( 1\right) }\right) \). Firstly, \(\alpha _{1}^{\left( 2\right) }=\left( \alpha _{1}^{\left( 2\right) }/\alpha _{1}^{\left( 1\right) }\right) \alpha _{1}^{\left( 1\right) }\) is obvious. Secondly, assume that \(\alpha _{\sigma }^{\left( 2\right) }=r\alpha _{\sigma }^{\left( 1\right) }\) for \(\sigma =1,\ldots ,N-1\) (\(2\le N\le n-1\)). Using (22),

$$\begin{aligned} z_{2,\left( N+1\right) }&=\sum _{\ell =1}^{N}\left( -N+2\ell -1\right) \alpha _{\ell }^{\left( 1\right) }\alpha _{N-\ell +1}^{\left( 2\right) }\\&=\left( 1-N\right) \alpha _{1}^{\left( 1\right) }\alpha _{N}^{\left( 2\right) }+\left( N-1\right) \alpha _{N}^{\left( 1\right) }\alpha _{1}^{\left( 2\right) }\\&+\left\{ \left( 3-N\right) \left( \frac{\alpha _{1}^{\left( 2\right) }}{\alpha _{1}^{\left( 2\right) }}\right) \alpha _{2}^{\left( 1\right) }\alpha _{N-1}^{\left( 1\right) }+\left( N-3\right) \left( \frac{\alpha _{1}^{\left( 2\right) }}{\alpha _{1}^{\left( 2\right) }}\right) \alpha _{N-1}^{\left( 1\right) }\alpha _{2}^{\left( 1\right) }\right\} \\&+\cdots \\&+\left\{ -\left( \frac{\alpha _{1}^{\left( 2\right) }}{\alpha _{1}^{\left( 2\right) }}\right) \alpha _{N/2}^{\left( 1\right) }\alpha _{N/2+1}^{\left( 1\right) }+\left( \frac{\alpha _{1}^{\left( 2\right) }}{\alpha _{1}^{\left( 2\right) }}\right) \alpha _{N/2}^{\left( 1\right) }\alpha _{N/2+1}^{\left( 1\right) }\right\} \\&=\left( 1-N\right) \alpha _{1}^{\left( 1\right) }\alpha _{N}^{\left( 2\right) }+\left( N-1\right) \alpha _{N}^{\left( 1\right) }\alpha _{1}^{\left( 2\right) } \end{aligned}$$

if N is even, and

$$\begin{aligned} z_{2,\left( N+1\right) }&=\sum _{\ell =1}^{N}\left( -N+2\ell -1\right) \alpha _{\ell }^{\left( 1\right) }\alpha _{N-\ell +1}^{\left( 2\right) }\\&=\left( 1-N\right) \alpha _{1}^{\left( 1\right) }\alpha _{N}^{\left( 2\right) }+\left( N-1\right) \alpha _{N}^{\left( 1\right) }\alpha _{1}^{\left( 2\right) }\\&+\left\{ \left( 3-N\right) \left( \frac{\alpha _{1}^{\left( 2\right) }}{\alpha _{1}^{\left( 2\right) }}\right) \alpha _{2}^{\left( 1\right) }\alpha _{N-1}^{\left( 1\right) }+\left( N-3\right) \left( \frac{\alpha _{1}^{\left( 2\right) }}{\alpha _{1}^{\left( 2\right) }}\right) \alpha _{N-1}^{\left( 1\right) }\alpha _{2}^{\left( 1\right) }\right\} \\&+\cdots \\&+\left\{ -2\left( \frac{\alpha _{1}^{\left( 2\right) }}{\alpha _{1}^{\left( 2\right) }}\right) \alpha _{\left\lfloor N/2\right\rfloor }^{\left( 1\right) }\alpha _{\left( 3N-3\right) /2}^{\left( 1\right) }+2\left( \frac{\alpha _{1}^{\left( 2\right) }}{\alpha _{1}^{\left( 2\right) }}\right) \alpha _{\left( 3N-3\right) /2}^{\left( 1\right) }\alpha _{\left\lfloor N/2\right\rfloor }^{\left( 1\right) }\right\} \\&=\left( 1-N\right) \alpha _{1}^{\left( 1\right) }\alpha _{N}^{\left( 2\right) }+\left( N-1\right) \alpha _{N}^{\left( 1\right) }\alpha _{1}^{\left( 2\right) } \end{aligned}$$

if N is odd. Since \(N\ne 1\) and \(\alpha _{1}^{\left( 1\right) }\ne 0\), we obtain \(\alpha _{\sigma }^{\left( 2\right) }=r\alpha _{\ell }^{\left( 1\right) }\) for all \(\sigma \) by induction. Using this statement, it is easy to show from (21) that \(x_{\sigma }^{\left( 2\right) }=rx_{\sigma }^{\left( 1\right) }\) for all \(\ell \).

Step 2:

Assume that \(\alpha _{\sigma }^{\left( 1\right) }=0\) for \(\sigma =1,\ldots ,\xi -1\) (here we assume \(2\le \xi \le n-1\)) and suppose \(\alpha _{\xi }^{\left( 1\right) }\ne 0\). Then, \(\alpha _{\sigma }^{\left( 2\right) }=0\) (\(\sigma =1,\ldots ,\xi -1\)), which can be derived inductively from (22):

$$\begin{aligned} z_{2,\left( \xi +1\right) }&=\left( \xi -1\right) \alpha _{\xi }^{\left( 1\right) }\alpha _{1}^{\left( 2\right) }=0\\ z_{2,\left( \xi +2\right) }&=\left( \xi -2\right) \alpha _{\xi }^{\left( 1\right) }\alpha _{2}^{\left( 2\right) }+\xi \alpha _{\xi +1}^{\left( 1\right) }\alpha _{1}^{\left( 2\right) }=0\\&\cdots \\ z_{2,\left( \xi +m\right) }&=\left( \xi -m\right) \alpha _{\xi }^{\left( 1\right) }\alpha _{m}^{\left( 2\right) } \\& +\sum _{\ell =1}^{m-1}\left( 2\ell +\xi -m\right) \alpha _{\xi +\ell }^{\left( 1\right) }\alpha _{m-\ell }^{\left( 2\right) }=0\left( m\in \mathbb {N}\right) \\&\cdots \\ z_{2,n}&=\left( 2\xi -n\right) \alpha _{\xi }^{\left( 1\right) }\alpha _{n-\xi }^{\left( 2\right) }+\sum _{\ell =\xi +1}^{n-1}\left( 2\ell -n\right) \alpha _{\ell }^{\left( 1\right) }\alpha _{n-\ell }^{\left( 2\right) }=0 \end{aligned}$$

In addition, one can inductively show that \(\alpha _{\sigma }^{\left( 2\right) }=r\alpha _{\sigma }^{\left( 1\right) }\) for all \(\sigma =\xi ,\ldots ,n-1\), where \(r=\left( \alpha _{\xi }^{\left( 2\right) }/\alpha _{\xi }^{\left( 1\right) }\right) \). Firstly, \(\alpha _{\xi }^{\left( 2\right) }=\left( \alpha _{\xi }^{\left( 2\right) }/\alpha _{\xi }^{\left( 1\right) }\right) \alpha _{\xi }^{\left( 1\right) }\) is obvious. Secondly, assume that the statement holds for \(\sigma =\xi ,\ldots ,\xi +m\) for some \(m\in \left\{ 0,\ldots ,n-\xi -1\right\} \). Then, by (22):

$$\begin{aligned} z_{2,\left( 2\xi +m+1\right) }&=\sum _{\ell =\xi }^{\xi +m+1}\left( 2\ell -2\xi -m-1\right) \alpha _{\ell }^{\left( 1\right) }\alpha _{2\xi +m-\ell +1}^{\left( 2\right) }\\&=\left( -m-1\right) \alpha _{\xi }^{\left( 1\right) }\alpha _{\xi +m+1}^{\left( 2\right) }+\left( m+1\right) \alpha _{\xi +m+1}^{\left( 1\right) }\alpha _{\xi }^{\left( 2\right) }\\&+\left( \alpha _{\xi }^{\left( 2\right) }/\alpha _{\xi }^{\left( 1\right) }\right) \sum _{\ell =1}^{m}\left( 2\ell -m-1\right) \alpha _{\ell +\xi }^{\left( 1\right) }\alpha _{\xi +m-\ell +1}^{\left( 1\right) }\\&=\left( -m-1\right) \alpha _{\xi }^{\left( 1\right) }\alpha _{\xi +m+1}^{\left( 2\right) }+\left( m+1\right) \alpha _{\xi +m+1}^{\left( 1\right) }\alpha _{\xi }^{\left( 2\right) }, \end{aligned}$$

where

$$\begin{aligned}&\sum _{\ell =1}^{m}\left( 2\ell -m-1\right) \alpha _{\ell +\xi }^{\left( 1\right) }\alpha _{\xi +m-\ell +1}^{\left( 1\right) } \\&=\left\{ \left( 1-m\right) \alpha _{\xi +1}^{\left( 1\right) }\alpha _{\xi +m}^{\left( 1\right) }+\left( m-1\right) \alpha _{\xi +m}^{\left( 1\right) }\alpha _{\xi +1}^{\left( 1\right) }\right\} \\&+\cdots \\&+\left\{ -\alpha _{\xi +m/2}^{\left( 1\right) }\alpha _{\xi +m/2+1}^{\left( 1\right) }+\alpha _{\xi +m/2+1}^{\left( 1\right) }\alpha _{\xi +m/2}^{\left( 1\right) }\right\} \\&=0 \end{aligned}$$

if m is even and

$$\begin{aligned}&\sum _{\ell =1}^{m}\left( 2\ell -m-1\right) \alpha _{\ell +\xi }^{\left( 1\right) }\alpha _{\xi +m-\ell +1}^{\left( 1\right) }\\&=\left\{ \left( 1-m\right) \alpha _{\xi +1}^{\left( 1\right) }\alpha _{\xi +m}^{\left( 1\right) }+\left( m-1\right) \alpha _{\xi +m}^{\left( 1\right) }\alpha _{\xi +1}^{\left( 1\right) }\right\} \\&+\cdots \\&+\left\{ -2\alpha _{\xi +m/2}^{\left( 1\right) }\alpha _{\xi +m/2+1}^{\left( 1\right) }+2\alpha _{\xi +m/2+1}^{\left( 1\right) }\alpha _{\xi +m/2}^{\left( 1\right) }\right\} +0\\&=0 \end{aligned}$$

if m is odd. Hence, we obtain \(\alpha _{\xi +m+1}^{\left( 2\right) }=r\alpha _{\xi +m+1}^{\left( 1\right) }\), which means that the statement is true for all \(\sigma \). Using this statement and (21) for \(j=\xi +1,\ldots n\), it is easy to show that \(x_{\sigma }^{\left( 2\right) }=rx_{\sigma }^{\left( 1\right) }\) for all \(\sigma =2,\ldots ,n-\xi +1\), where \(r=\left( \alpha _{\xi }^{\left( 2\right) }/\alpha _{\xi }^{\left( 1\right) }\right) \).

Step 3:

Finally, suppose \(\alpha _\sigma ^{(1)}=\alpha _\sigma ^{(2)}=0\) for all \(\sigma \). Then, one can easily check from Lemma 13 that the matrices \(X_1\) and \(X_2\) commute.

Using the statement above, Lemma 11 follows straightforward.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kamizawa, T. Some Remarks on the Shifner-Erougin-Salakhova-Chebotarev Type Differential Equations. Results Math 76, 86 (2021). https://doi.org/10.1007/s00025-021-01397-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00025-021-01397-3

Keywords

Mathematics Subject Classification

Navigation