Skip to main content
Log in

Distribution Properties for t-Hooks in Partitions

  • Published:
Annals of Combinatorics Aims and scope Submit manuscript

Abstract

Partitions, the partition function p(n), and the hook lengths of their Ferrers–Young diagrams are important objects in combinatorics, number theory, and representation theory. For positive integers n and t, we study \(p_t^\mathrm{e}(n)\) (resp. \(p_t^\mathrm{o}(n)\)), the number of partitions of n with an even (resp. odd) number of t-hooks. We study the limiting behavior of the ratio \(p_t^\mathrm{e}(n)/p(n)\), which also gives \(p_t^\mathrm{o}(n)/p(n)\), since \(p_t^\mathrm{e}(n) + p_t^\mathrm{o}(n) = p(n)\). For even t, we show that

$$\begin{aligned} \lim \limits _{n \rightarrow \infty } \dfrac{p_t^\mathrm{e}(n)}{p(n)} = \dfrac{1}{2}, \end{aligned}$$

and for odd t, we establish the non-uniform distribution

$$\begin{aligned} \lim \limits _{n \rightarrow \infty } \dfrac{p^\mathrm{e}_t(n)}{p(n)} = {\left\{ \begin{array}{ll} \dfrac{1}{2} + \dfrac{1}{2^{(t+1)/2}} &{} \text {if } 2 \mid n, \\ \\ \dfrac{1}{2} - \dfrac{1}{2^{(t+1)/2}} &{} \text {otherwise.} \end{array}\right. } \end{aligned}$$

Using the Rademacher circle method, we find an exact formula for \(p_t^\mathrm{e}(n)\) and \(p_t^\mathrm{o}(n)\), and this exact formula yields these distribution properties for large n. We also show that for sufficiently large n, the sign of \(p_t^\mathrm{e}(n) - p_t^\mathrm{o}(n)\) is periodic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tom M. Apostol. Modular functions and Dirichlet series in number theory, volume 41 of Graduate Texts in Mathematics. Springer-Verlag, New York, second edition, 1990.

  2. J. S. Frame, G. de B. Robinson, and R. M. Thrall. The hook graphs of the symmetric groups. Canad. J. Math., 6:316–324, 1954.

    Article  MathSciNet  Google Scholar 

  3. Andrew Granville and Ken Ono. Defect zero \(p\)-blocks for finite simple groups. Trans. Amer. Math. Soc., 348(1):331–347, 1996.

    Article  MathSciNet  Google Scholar 

  4. Peter Hagis, Jr. Partitions with a restriction on the multiplicity of the summands. Trans. Amer. Math. Soc., 155:375–384, 1971.

    Article  MathSciNet  Google Scholar 

  5. Guo-Niu Han. The Nekrasov-Okounkov hook length formula: refinement, elementary proof, extension and applications. Ann. Inst. Fourier (Grenoble), 60(1):1–29, 2010.

    Article  MathSciNet  Google Scholar 

  6. Gordon James and Adalbert Kerber. The representation theory of the symmetric group, volume 16 of Encyclopedia of Mathematics and its Applications. Addison-Wesley Publishing Co., Reading, Mass., 1981. With a foreword by P. M. Cohn, With an introduction by Gilbert de B. Robinson.

  7. Nikita A. Nekrasov and Andrei Okounkov. Seiberg-Witten theory and random partitions. In The unity of mathematics, volume 244 of Progr. Math., pages 525–596. Birkhäuser Boston, Boston, MA, 2006.

  8. Sarah Peluse. On even values in the character table of the symmetric group. arXiv preprint.

  9. G. de B. Robinson. Representation theory of the symmetric group. Mathematical Expositions, No. 12. University of Toronto Press, Toronto, 1961.

  10. A. Young. On Quantitative Substitutional Analysis (Second Paper). Proc. Lond. Math. Soc., 34:361–397, 1902.

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William Craig.

Additional information

Communicated by Marni Mishna

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Craig, W., Pun, A. Distribution Properties for t-Hooks in Partitions. Ann. Comb. 25, 677–695 (2021). https://doi.org/10.1007/s00026-021-00547-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00026-021-00547-2

Navigation