Skip to main content
Log in

The unique identification of variable-order fractional wave equations

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

We analyze the well-posedness and smoothing properties of a variable-order time-fractional wave partial differential equation in multiple space dimensions. Accordingly, we prove the unique determination of the variable order in this model with the observations of the unknown solutions on an arbitrarily small spatial domain over a sufficiently small time interval. The proved theorem provides a guidance where the measurements should be taken and ensure the unique identification of the variable order.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams, R.A., Fournier, J.J.F.: Sobolev Spaces. Elsevier, San Diego (2003)

    MATH  Google Scholar 

  2. Bagley, R., Torvik, P.: A theoretical basis for the application of fractional calculus to viscoelasticity. J. Rheol. 27, 201–210 (1983)

    Article  MATH  Google Scholar 

  3. Coclite, G., Dipierro, S., Maddalena, F., Valdinoci, E.: Wellposedness of a nonlinear peridynamic model. Nonlinearity 32, 1 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  4. Coclite, G., Risebro, N.: A difference method for the McKean–Vlasov equation. Z. Angew. Math. Phys. 70, 149 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  5. Coclite, G., Dipierro, S., Maddalena, F., Valdinoci, E.: Singularity formation in fractional Burgers equations. J. Nonlinear Sci. 30, 1285–1305 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cuesta, E., Lubich, C., Palencia, C.: Convolution quadrature time discretization of fractional diffusion-wave equations. Math. Comput. 75, 673–696 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  7. Diethelm, K.: Ser. Lecture Notes in Mathematics. In: The Analysis of Fractional Differential Equations, vol. 2004. Springer, Berlin (2010)

    Chapter  MATH  Google Scholar 

  8. Evans, L.C.: Partial Differential Equations, Graduate Studies in Mathematics, V 19. American Mathematical Society, Rhode Island (1998)

    Google Scholar 

  9. Gorenflo, R., Iskenderov, A., Luchko, Y.: Mapping between solutions of fractional diffusion-wave equations. Frac. Calc. Appl. Anal. 3, 75–86 (2000)

    MathSciNet  MATH  Google Scholar 

  10. Hata, N., Tobolsky, A., Bondi, A.: Effect of plasticizers on the viscoelastic properties of poly(vinyl chloride). J. Appl. Polym. Sci. 12, 2597–2613 (1968)

    Article  Google Scholar 

  11. Jin, B., Lazarov, R., Zhou, Z.: Two schemes for fractional diffusion and diffusion-wave equations with nonsmooth data. SIAM J. Sci. Comput. 38, A146–A170 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  12. Jin, B., Li, B., Zhou, Z.: Discrete maximal regularity of time-stepping schemes for fractional evolution equations. Numer. Math. 138, 101–131 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  13. Kian, Y., Soccorsi, E., Yamamoto, M.: On time-fractional diffusion equations with space-dependent variable order. Annales Henri Poincaré 19, 3855–3881 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  14. Li, B., Wang, T., Xie, X.: Analysis of a time-stepping discontinuous Galerkin method for fractional diffusion-wave equations with nonsmooth Data. J. Sci. Comput. 82, 4 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  15. Li, Z., Liu, Y., Yamamoto, M.: Fractional Differential Equations. In: Inverse Problems of Determining Parameters of the Fractional Partial Differential Equations, pp. 431–442. de Gruyter & Co, Berlin (2019)

    Google Scholar 

  16. Li, Z., Yamamoto, M.: Uniqueness for inverse problems of determining orders of multi-term time-fractional derivatives of diffusion equation. Appl. Anal. 94, 570–579 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  17. Liang, J., Chen, Y., Vinagre, B., Podlubny, I.: Fractional Differentiation and Its Applications. In: Mehauté, A., Tenreiro, J., Trigeassou, J., Sabatier, J. (eds.) Identifying Diffusion-Wave Constant, Fractional Order and Boundary Profile of a Time-Fractional Diffusion-Wave Equation from Noisy Boundary Measurements, pp. 517–532. Ubooks, Germany (2005)

    Google Scholar 

  18. Liu, F., Meerschaert, M., McGough, R., Zhuang, P., Liu, Q.: Numerical methods for solving the multi-term time-fractional wave-diffusion equation. Frac. Calc. Appl. Anal. 16, 9–25 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  19. Lopushansky, A., Lopushanska, H.: Inverse source Cauchy problem for a time fractional diffusion-wave equation with distributions. Electron. J. Differ. Equ. 2017, 1–14 (2017)

    MathSciNet  Google Scholar 

  20. Lorenzo, C.F., Hartley, T.T.: Variable order and distributed order fractional operators. Nonlinear Dyn. 29, 57–98 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  21. Luchko, Y., Francesco, F.: Cauchy and signaling problems for the time-fractional diffusion-wave equation. J. Vib. Acoust. 136, 050904 (2014)

    Article  Google Scholar 

  22. Luchko, Y., Mainardi, F., Povstenko, Y.: Propagation speed of the maximum of the fundamental solution to the fractional diffusion-wave equation. Comput. Math. Appl. 66, 774–784 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  23. Mainardi, F.: Fractional relaxation-oscillation and fractional diffusion-wave phenomena. Chaos Solitons & Fractals 7, 1461–1477 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  24. Mainardi, F.: The fundamental solutions for the fractional diffusion-wave equation. Appl. Math. Lett. 9, 23–28 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  25. Mainardi, F.: Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models. World Scientific, Singapore (2010)

    Book  MATH  Google Scholar 

  26. McLean, W., Mustapha, K.: A second-order accurate numerical method for a fractional wave equation. Numer. Math. 105, 481–510 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  27. Meerschaert, M.M., Sikorskii, A.: Stochastic Models for Fractional Calculus, De Gruyter Studies in Mathematics, (2011)

  28. Mehta, P., Pang, G., Song, F., Karniadakis, G.E.: Discovering a universal variable-order fractional model for turbulent Couette flow using a physics-informed neural network. Fract. Calc. Appl. Anal. 22, 1675–1688 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  29. Podlubny, I.: Fractional Differential Equations. Academic Press, Cambridge (1999)

    MATH  Google Scholar 

  30. Sakamoto, K., Yamamoto, M.: Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems. J. Math. Anal. Appl. 382, 426–447 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  31. Samko, S., Ross, B.: Integration and differentiation to a variable fractional order. Integral Transforms and Special Functions 1, 277–300 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  32. Siskova, K., Slodicka, M.: Recognition of a time-dependent source in a time-fractional wave equation. Appl. Numer. Math. 121, 1–17 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  33. Spanos, P.D., Evangelatos, G.I.: Response of a non-linear system with restoring forces governed by fractional derivatives: time domain simulation and statistical linearization solution. Soil Dyn. Earthq. Eng. 30, 811–821 (2010)

    Article  Google Scholar 

  34. Spanos, P.D., Malara, G.: Nonlinear random vibrations of beams with fractional derivative elements. J. Eng. Mech. 140, 04014069 (2014)

    Google Scholar 

  35. Stynes, M., O’Riordan, E., Gracia, J.L.: Error analysis of a finite difference method on graded mesh for a time-fractional diffusion equation. SIAM J. Numer. Anal. 55, 1057–1079 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  36. Sun, H., Chang, A., Zhang, Y., Chen, W.: A review on variable-order fractional differential equations: mathematical foundations, physical models, numerical methods and applications. Fract. Calc. Appl. Anal. 15, 141–160 (2012)

    MathSciNet  Google Scholar 

  37. Sun, H., Sun, Z.Z., Gao, G.H.: Some temporal second order difference schemes for fractional wave equations. Numer. Methods Part. Differ. Equ. 32, 970–1001 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  38. Thomée, V.: Lecture Notes in Mathematics. In: Galerkin Finite Element Methods for Parabolic Problems, vol. 1054. Springer, New York (1984)

    MATH  Google Scholar 

  39. van Ruymbeke, E., Coppola, S., Balacca, L., Righi, S., Vlassopoulos, D.: Decoding the viscoelastic response of polydisperse star/linear polymer blends. J. Rheol. 54, 507–538 (2010)

    Article  Google Scholar 

  40. Wang, H., Zheng, X.: Wellposedness and regularity of the variable-order time-fractional diffusion equations. J. Math. Anal. Appl. 475, 1778–1802 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  41. Wei, T., Zhang, Y.: The backward problem for a time-fractional diffusion-wave equation in a bounded domain. Comput. Math. Appl. 75, 3632–3648 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  42. Zayernouri, M., Karniadakis, G.E.: Fractional spectral collocation methods for linear and nonlinear variable order FPDEs. J. Comput. Phys. 293, 312–338 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  43. Zeng, F., Zhang, Z., Karniadakis, G.: A generalized spectral collocation method with tunable accuracy for variable-order fractional differential equations. SIAM J. Sci. Comput. 37, A2710–A2732 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  44. Zheng, X., Wang, H.: Wellposedness and regularity of a nonlinear variable-order fractional wave equation. Appl. Math. Lett. 95, 29–35 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  45. Zhuang, P., Liu, F., Anh, V., Turner, I.: Numerical methods for the variable-order fractional advection-diffusion equation with a nonlinear source term. SIAM J. Numer. Anal. 47, 1760–1781 (2009)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to express their most sincere thanks to the referees for their very helpful comments and suggestions, which greatly improved the quality of this paper. All data generated or analyzed during this study are included in this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was partially funded by the ARO MURI Grant W911NF-15-1-0562 and by the National Science Foundation under Grant DMS-2012291.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, X., Wang, H. The unique identification of variable-order fractional wave equations. Z. Angew. Math. Phys. 72, 100 (2021). https://doi.org/10.1007/s00033-021-01476-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-021-01476-z

Keywords

Mathematics Subject Classification

Navigation