Skip to main content
Log in

A new result for the global existence and boundedness of weak solutions to a chemotaxis-Stokes system with rotational flux term

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

In this paper, we consider a three-dimensional chemotaxis-Stokes system

$$\begin{aligned} \left\{ \begin{aligned}&n_t+u\cdot \nabla n=\Delta n^m-\nabla \cdot (nS(x,n,c)\cdot \nabla c),&\quad&x\in \Omega , t>0,\\&c_t+u\cdot \nabla c=\Delta c-nf(c),&\quad&x\in \Omega ,t>0,\\&u_t+\nabla P=\Delta u+n\nabla \phi ,&\quad&x\in \Omega ,t>0,\\&\nabla \cdot u=0,&\quad&x\in \Omega ,t>0,\\&(\nabla n^m- n S(x,n,c)\cdot \nabla c)\cdot \nu =\frac{\partial c}{\partial \nu }=0,u=0,&\quad&x\in \partial \Omega ,t>0,\\&n(x,0)=n_0(x),c(x,0)=c_0(x),u(x,0)=u_0(x),&\quad&x\in \Omega \end{aligned} \right. \end{aligned}$$
(0.1)

in a bounded domain \(\Omega \subset {\mathbb {R}}^3\) with smooth boundary, where \(\phi \), f and S are given functions with values in \(\Omega \), \([0,\infty )\) and \({\mathbb {R}}^{3\times 3}\), respectively, under the no-flux boundary condition for nc and Dirichlet boundary condition for u. It is also required that \(f\in C^1([0,\infty ))\) is locally bounded in \([0,\infty )\), that S satisfies \(|S(x,n,c)|\le n^{l-2}S_0(c)\) with some nondecreasing \(S_0:[0,\infty )\rightarrow [0,\infty )\), and that m fulfills

$$\begin{aligned} m>\frac{5}{3}l-\frac{20}{9}\quad \text {and}\quad m>-\frac{3}{4}l+\frac{21}{8}\quad \text {with}\quad \frac{25}{12}\ge l>2. \end{aligned}$$
(0.2)

Then, with any reasonably regular initial data, the corresponding initial-boundary problem for (0.1) processes a global in time and bounded solution. This result extends the previous global boundedness result with \(m>m_*(l)\), where

$$\begin{aligned} m_*(l)=\left\{ \begin{aligned}&l-\frac{5}{6},&\quad&\text {if }\,\frac{31}{12}\ge l>2,\\&\frac{7}{5}l-\frac{28}{15},&\quad&\text {if }\,l>\frac{31}{12}, \end{aligned} \right. \end{aligned}$$

([15]) since both

$$\begin{aligned} l-\frac{5}{6}\ge \frac{5}{3}l-\frac{20}{9} \end{aligned}$$

and

$$\begin{aligned} l-\frac{5}{6}\ge -\frac{3}{4}l+\frac{21}{8} \end{aligned}$$

hold on \(\frac{25}{12}\ge l>2\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bellomo, N., Bellouquid, A., Tao, Y., Winkler, M.: Toward a mathematical theory of Keller–Segel models of pattern formation in biological tissues. Math. Models Methods Appl. Sci. 25, 1663–1763 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  2. Cao, X.: Global classical solutions in chemotaxis(-Navier)–Stokes system with rotational flux term. J. Differ. Equ. 261, 6883–6914 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  3. Cao, X., Lankeit, J.: Global classical small-data solutions for a three-dimensional chemotaxis-Navier–Stokes system involving matrix-valued sensitivities. Calc. Var. Partial Differ. Equ. 55(Art. 107), 39 (2016)

    MathSciNet  MATH  Google Scholar 

  4. Chae, M., Kang, K., Lee, J.: Global existence and temporal decay in Keller–Segel models coupled to fluid equations. Commun. Partial Differ. Equ. 39, 1205–1235 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cieśiak, T., Winkler, M.: Global bounded solutions in a two-dimensional quasilinear Keller–Segel system with exponentially decaying diffusivity and subcritical sensitivity. Nonlinear Anal. Real World Appl. 35, 1–19 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  6. Dombrowski, C., Cisneros, L., Chatkaew, S., Goldstein, R.E., Kessler, J.O.: Self-concentration and large-scale coherence in bacterial dynamics. Phys. Rev. Lett. 93, 098103 (2004)

    Article  Google Scholar 

  7. Duan, R., Lorz, A., Markowich, P.A.: A note on global existence for the Chemotaxis–Stokes model with nonlinear diffusion. Commun. Partial Differ. Equ. 35, 1635–1673 (2010)

    Article  MATH  Google Scholar 

  8. Duan, R., Xiang, Z.: A note on global existence for the Chemotaxis–Stokes model with nonlinear diffusion. Int. Math. Res. Notices 7, 1833–1852 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  9. Di Francesco, M., Lorz, A., Markowich, P.A.: Chemotaxis-fluid coupled model for swimming bacteria with nonlinear diffusion: global existence and asymptotic behavior. Discrete Contin. Dyn. Syst. 28, 1437–1453 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. Hillen, T., Painter, K.J.: A user’s guide to PDE models for chemotaxis. J. Math. Biol. 58, 183–217 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  11. Horstmann, D., Winkler, M.: Boundedness vs. blow-up in a chemotaxis system. J. Differ. Equ. 215, 52–107 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  12. Ke, Y., Zheng, J.: An optimal result for global existence in a three-dimensional Keller–Segel–Navier–Stokes system involving tensor-valued sensitivity with saturation. Calc. Var. Partial Differ. Equ. 58, 109 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  13. Keller, E.F., Segel, L.A.: Initiation of slime mold aggregation viewed as an instability. J. Theor. Biol. 26(3), 399–415 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  14. Lankeit, J.: Long-term behavior in a chemotaxis-fluid system with logistic source. Math. Models Methods Appl. Sci. 26, 2071–2109 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  15. Li, F., Li, Y.: Global existence and boundedness of weak solutions to a Chemotaxis–Stokes system with rotational flux term. Z. Angew. Math. Phys. 70(102), 1–21 (2019)

    MathSciNet  MATH  Google Scholar 

  16. Liu, J., Lorz, A.: A coupled chemotaxis-fluid model: global existence. Ann. Inst. H Poincaré Anal. Non Linéaire 28, 643–652 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  17. Liu, J., Wang, Y.: Global existence and boundedness in a Keller–Segel–(Navier–)Stokes system with signal-dependent sensitivity. J. Math. Anal. Appl. 447, 499–528 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  18. Lorz, A.: Coupled chemotaxis fluid equations. Math. Models Methods Appl. Sci. 20, 987–1004 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  19. Mizoguchi, N., Winkler, M.: Blow-up in the two-dimensional parabolic Keller–Segel system (preprint)

  20. Peng, Y., Xiang, Z.: Global existence and boundedness in a 3d Keller–Segel–Stokes system with nonlinear diffusion and rotational flux. Z. Angew. Math. Phys. 68(3), 68 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  21. Simon, J.: Compact sets in the space \(L^p(0, T; B)\). Ann. Mat. Pura Appl. 146, 65–96 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  22. Sohr, H.: The Navier–Stokes equations: an elementary functional analytic approach. Birkhäuser, Basel (2001)

    Book  MATH  Google Scholar 

  23. Tao, Y., Winkler, M.: Boundedness in a quasilinear parabolic-parabolic Keller–Segel system with subcritical sensitivity. J. Differ. Equ. 252, 692–715 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  24. Tao, Y., Winkler, M.: Locally bounded global solutions in a three-dimensional Chemotaxis–Stokes system with nonlinear diffusion. Ann. I. H. Poincaré-AN 30, 157–178 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  25. Tuval, I., Cisneros, L., Dombrowski, C., Wolgemuth, C.W., Kessler, J.O., Goldstein, R.E.: Bacterial swimming and oxygen transport near contact limes. Proc. Natl. Acad. Sci. USA 102, 2277–2282 (2005)

    Article  MATH  Google Scholar 

  26. Wang, W.: Global boundedness of weak solutions for a three-dimensional Chemotaxis–Stokes system with nonlinear diffusion and rotation. J. Differ. Equ. 268, 7047–7091 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  27. Wang, Y., Li, X.: Boundedness for a 3D chemotaxis-Stokes system with porous medium diffusion and tensor-valued chemotactic sensitivity. Z. Angew. Math. Phys. 68(2), 29 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  28. Wang, Y., Xiang, Z.: Global existence and boundedness in a Keller–Segel–Stokes system involving a tensor-valued sensitivity with saturation. J. Differ. Equ. 259, 7578–7609 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  29. Wang, Y., Xiang, Z.: Global existence and boundedness in a Keller–Segel–Stokes system involving a tensor-valued sensitivity with saturation: the 3d case. J. Differ. Equ. 268, 4944–4973 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  30. Winkler, M.: Global large-data solutions in a chemotaxis–(Navier–)Stokes system modeling cellular swimming in fluid drops. Commun. Partial Differ. Equ. 37, 319–351 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  31. Winkler, M.: Finite-time blow-up in the higher-dimensional parabolic-parabolic Keller–Segel system. J. Math. Pures. Appl. 100, 748–767 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  32. Winkler, M.: Stabilization in a two-dimensional Chemotaxis–Navier–Stokes system. Arch. Ration. Mech. Anal. 211, 455–487 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  33. Winkler, M.: Boundedness and large time behavior in a three-dimensional Chemotaxis–Stokes system with nonlinear diffusion and general sensitivity. Calc. Var. Partial Differ. Equ. 54, 3789–3828 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  34. Winkler, M.: Large-data global generalized solutions in a chemotaxis system with tensor-valued sensitivities. SIAM J. Math. Anal. 47, 3092–3115 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  35. Winkler, M.: Global weak solutions in a three-dimensional Chemotaxis–Navier–Stokes system. H. Poincaré Anal. Non Linéaire 33, 1329–1352 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  36. Winkler, M.: How far do chemotaxis-driven forces influence regularity in the Navier–Stokes system? Trans. Am. Math. Soc. 369, 3067–3125 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  37. Winkler, M.: Global existence and stabilization in a degenerate Chemotaxis–Stokes system with mildly strong diffusion enhancement. J. Differ. Equ. 264(10), 6109–6151 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  38. Winkler, M.: Global mass-preserving solutions in a two-dimensional Chemotaxis–Stokes system with rotational flux components. J. Evol. Equ. 18, 1267–1289 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  39. Winkler, M.: A three-dimensional Keller–Segel Navier–Stokes system with logistic source: global weak solutions and asymptotic stabilization. J. Funct. Anal. 276(5), 1339–1401 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  40. Winkler, M.: Can rotational fluxes impede the tendency toward spatial homogeneity in nutrient Taxis(–Stokes) systems? Int. Math. Res. Notices 1 (2019)

  41. Xue, C.: Macroscopic equations for bacterial chemotaxis: integration of detailed biochemistry of cell signaling. J. Math. Biol. 70, 1–44 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  42. Xue, C., Othmer, H.G.: Multiscale models of taxis-driven patterning in bacterial populations. SIAM J. Appl. Math. 70, 133–167 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  43. Zhang, Q., Li, Y.: Global weak solutions for the three-dimensional Chemotaxis–Navier–Stokes system with nonlinear diffusion. J. Differ. Equ. 259, 3730–3754 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  44. Zhang, Q., Zheng, X.: Global well-posedness for the two-dimensional incompressible Chemotaxis–Navier–Stokes equations. SIAM J. Math. Anal. 46, 3078–3105 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  45. Zheng, J.: Global weak solutions in a three-dimensional Keller–Segel–Navier–Stokes system with nonlinear diffusion. J. Differ. Equ. 263, 2606–2629 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  46. Zheng, J.: An optimal result for global existence and boundedness in a three-dimensional Keller–Segel–Stokes system with nonlinear diffusion. J. Differ. Equ. 267, 2385–2415 (2019)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work is supported by NSFC, PR, China (NO. 12071030).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dayong Qi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qi, D., Zheng, J. A new result for the global existence and boundedness of weak solutions to a chemotaxis-Stokes system with rotational flux term. Z. Angew. Math. Phys. 72, 88 (2021). https://doi.org/10.1007/s00033-021-01546-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-021-01546-2

Keywords

Mathematics Subject Classification

Navigation