Skip to main content
Log in

Plane stress asymptotic solution for steady crack growth in an elastic/perfectly plastic solid for mode I crack propagation

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

Previous efforts at solving an asymptotic, plane stress, steady-state crack propagation problem for a linear elastic/perfectly plastic material, under the von Mises yield condition, have failed to produce solutions that satisfy all necessary physical criteria for the mode I crack problem. These include continuous elastic and plastic stress fields that satisfy equilibrium without violating the yield condition, positive plastic work, and various jump conditions for strain rates. By using an alternative yield criterion, the parabolic von Mises, an asymptotic solution is obtained for this particular problem. This alternative yield condition was proposed by Richard von Mises as an approximation of the elliptical yield locus in the principal stress plane. It replaces the standard ellipse of the von Mises yield condition with two intersecting parabolas. The resulting yield surface has hyperbolic partial differential equations governing its entirety with the exception of two points, which are similar mathematically to the square corners of the Tresca yield surface. These corners provide the extra degree of freedom necessary to allow an asymptotic solution of this steady-state crack problem that has proven unattainable for the conventional von Mises yield condition under plane stress loading conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Chitaley, A.D., McClintock, F.A.: Elastic-plastic mechanics of steady crack growth under anti-plane shear. J. Mech. Phys. Solids 19, 147–163 (1971). https://doi.org/10.1016/0022-5096(71)90025-1

    Article  MATH  Google Scholar 

  2. Slepyan, L.I.: Growing crack during plane deformation of an elastic-plastic body. Izv. Akad. Nauk SSSR. Mekhanika Tverdogo Tela 9, 57–67 (1974)

    Google Scholar 

  3. Rice, J.R., Sorensen, E.P.: Continuing Crack-tip deformation and fracture for plane-strain crack growth in elastic-plastic solids. J. Mech. Phys. Solids 26, 163–186 (1978). https://doi.org/10.1016/0022-5096(78)90007-8

    Article  MATH  Google Scholar 

  4. Sorensen, E.P.: A finite-element investigation of stable crack growth in anti-plane shear. Int. J. Fract. 14, 485–500 (1978). https://doi.org/10.1007/BF01390470

    Article  Google Scholar 

  5. Sorensen, E.P.: A numerical investigation of plane strain stable crack growth under small scale yielding conditions, In: Landes, J.D., Begley, J.A., Clark, G.A. (eds.) Elastic-Plastic Fracture, pp. 151-174, ASTM STP 668, American Society for Testing and Materials (1979)

  6. Dean, R.H., Hutchinson, J.W.: Quasi-static steady crack growth in small-scale yielding, In: Fracture Mechanics: Twelfth Conference, pp. 383–405, ASTM STP 700, American Society for Testing and Materials (1980)

  7. Rice, J.R., Drugan, W.J., Sham, T-L.: Elastic-plastic analysis of growing cracks, In: Fracture Mechanics: Twelfth Conference, pp. 189–221, ASTM STP 700, American Society for Testing and Materials (1980)

  8. Drugan, W.J., Rice, J.R., Sham, T.-L.: Asymptotic analysis of growing plane strain tensile cracks in elastic-ideally plastic solids. J. Mech. Phys. Solids 30, 447–473 (1982). https://doi.org/10.1016/0022-5096(82)90027-8

    Article  MATH  Google Scholar 

  9. Pan, H.: Some discussion on moving strong discontinuity under plane stress conditions. Mech. Mater. 1, 325–329 (1982). https://doi.org/10.1016/0167-6636(82)90032-1

    Article  Google Scholar 

  10. Rice, J.R.: Elastic-plastic crack growth. In: Hopkins, H.G., Sewell, M.H. (eds.) Mechanics of Solids - The Rodney Hill 60th Anniversary Volume, pp. 539–562. Pergamon Press, Oxford (1982)

    Google Scholar 

  11. Dean, R.H.: Elastic-plastic steady crack growth in plane stress, In: Shih, C.F., Gudas, J.P. (eds), Elastic-Plastic Fracture: Second Symposium, Volume I –Inelastic Crack Analysis, pp. I-39–I-51, ASTM STP 803V1-EB (1983)

  12. Drugan, W.J., Rice, J.R.: Restrictions on quasi-statically moving surfaces of strong discontinuity in elastic-plastic solids. In: Dvorak, G.J., Shield, R.T. (eds.) Mechanics of Material Behavior - The Daniel C Drucker Anniversary Volume. Studies in Applied Mechanics, vol. 6, pp. 59–73. Elsevier, Amsterdam (1984)

    Chapter  Google Scholar 

  13. Gao, Y.C.: Asymptotic dynamic solution to the mode-I propagating crack-tip field. Int. J. Fract. 29, 171–180 (1985). https://doi.org/10.1007/BF00125468

    Article  Google Scholar 

  14. Castañeda, P.P.: Asymptotic fields of a perfectly-plastic, plane-stress mode II growing crack. J. App. Mech. 53, 831–833 (1986). https://doi.org/10.1115/1.3171866

    Article  MATH  Google Scholar 

  15. Narasimhan, R., Rosakis, A.J., Hall, J.F.: A finite element study of stable crack growth under plane stress conditions: Part I - Elastic-Perfectly Plastic Solids. J. App. Mech. 54, 838–845 (1987). https://doi.org/10.1115/1.3173126

    Article  Google Scholar 

  16. Narasimhan, R., Rosakis, A.J., Hall, J.F.: A finite element study of stable crack growth under plane stress conditions: Part II - Influence of Hardening. J. App. Mech. 54, 846–853 (1987). https://doi.org/10.1115/1.3173127

    Article  Google Scholar 

  17. Narasimhan, R., Rosakis, A.R.: Stable crack growth in elastic-plastic solids under plane stress conditions: a finite element study, In: Luxmore, A.R., Owen, D.R.J., Rajapakse, Y.P.S., Kanninen, M.F. (eds.) Numerical Methods in Fracture Mechanics, Fourth International Congress, Pineridge Press, Swansea (1987)

  18. Nikolic, R.R., Rice, J.R.: Dynamic growth of anti-plane shear crack in ideally plastic crystals. Mech. Mater. 7, 163–173 (1988). https://doi.org/10.1016/0167-6636(88)90015-4

    Article  Google Scholar 

  19. Gao, Y.C.: Further study on strain singularity behavior of moving cracks in elastic-viscoplastic materials. Theoret. Appl. Fract. Mech. 14, 233–242 (1990). https://doi.org/10.1016/0167-8442(90)90022-R

    Article  Google Scholar 

  20. Gao, Y.C., Rousselier, G.: Near tip quasi-static crack growth behavior in strain hardening and softening material. Theoret. Appl. Fract. Mech. 44, 149–155 (1994). https://doi.org/10.1016/0167-8442(94)90010-8

    Article  Google Scholar 

  21. Drugan, W.J.: Limitations of leading-order asymptotic solutions for elastic-plastic crack growth. J. Mech. Phys. Solids 46, 2361–2386 (1998). https://doi.org/10.1016/S0022-5096(98)00061-1

  22. Broberg, K.B.: Cracks and Fracture, pp. 308–327. Academic Press, San Diego (1999)

    Google Scholar 

  23. von Mises, R.: Three remarks on the theory of the ideal plastic body, Reissner Anniversary Volume, Contributions to Applied Mechanics, pp. 415-429, J.W. Edwards, Ann Arbor (1949)

  24. Freudenthal, A.M., Geiringer, H.: The Mathematical Theories of the Inelastic Continuum, Elasticity and Plasticity, In: Flügge, S. (ed.) Handbuch der Physik, VI, pp. 229-433, Springer-Verlag, Berlin (1958)

  25. Geiringer, H.: Ideal Plasticity, Mechanics of Solids III, In: Truesdell, C. (ed.) Handuch der Physik, VIa/3, pp. 403–533, Springer-Verlag, Berlin (1973)

  26. Unger, D.J.: A plane stress perfectly plastic mode I crack solution with continuous stress field. J. App. Mech. 72, 62–67 (2005). https://doi.org/10.1115/1.1828061

    Article  MATH  Google Scholar 

  27. Unger, D.J.: Continuous stress field with compatible velocity field for plane stress perfectly plastic mode I crack, In: Voyiadjis, G.Z., Dorgan, R.J. (eds.) Proceedings of McMat2005 (compact disk), paper 497, Joint ASME/ASCE/SES Conference on Mechanics and Materials, Baton Rouge (2005)

  28. Unger, D.J.: A complete perfectly plastic solution for the mode I crack problem under plane stress loading conditions. J. App. Mech. 74, 586–589 (2007). https://doi.org/10.1115/1.2338055

    Article  MATH  Google Scholar 

  29. Unger, D.J.: Perfectly plastic caustics for the opening mode of fracture. Theoret. Appl. Fract. Mech. 44, 82–94 (2005). https://doi.org/10.1016/j.tafmec.2005.05.007

    Article  Google Scholar 

  30. Unger, D.J.: Analytical Fracture Mechanics, Academic Press, San Diego (1995), Reprinted Dover, Mineola (2001)

  31. Kachanov, L.M.: Fundamentals of the Theory of Plasticity. Dover, Mineola (2004)

    Google Scholar 

  32. Hutchinson, J.W.: Plane stress and strain fields at a crack tip. J. Mech. Phys. Solids 16, 337–347 (1968). https://doi.org/10.1016/0022-5096(68)90021-5

    Article  Google Scholar 

  33. Unger, D.J.: Generalized Tresca yield condition as a family of elliptic curves with application to mode I crack problems. Z. Angew. Math. Phys. 73, 184 (2022). https://doi.org/10.1007/s00033-022-01825-6

    Article  MathSciNet  MATH  Google Scholar 

  34. Timoshenko, S.P., Goodier, J.N.: Theory of Elasticity, 3rd edn. McGraw-Hill, New York (1970)

    MATH  Google Scholar 

  35. Spiegel, M.R., Liu, J.: Mathematical Handbook of Formulas and Tables. Shaum’s Outline Series, 2nd edn., pp. 113–115. McGraw-Hill, New York (1999)

    Google Scholar 

Download references

Funding

This research was not sponsored by any organization.

Author information

Authors and Affiliations

Authors

Contributions

The author is the sole contributor to this article including the preparation of figures and tables.

Corresponding author

Correspondence to David J. Unger.

Ethics declarations

Conflict of interest

No conflicts of interest exist in the publication of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Unger, D.J. Plane stress asymptotic solution for steady crack growth in an elastic/perfectly plastic solid for mode I crack propagation. Z. Angew. Math. Phys. 74, 77 (2023). https://doi.org/10.1007/s00033-022-01916-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-022-01916-4

Keywords

Mathematics Subject Classification

Navigation