Skip to main content
Log in

Diffusion Bias-Compensation RLS Estimation Over Noisy Node-Specific Networks

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

We study the node-specific parameter estimation problem, where agents in a network collaborate to obtain the different but overlapping vectors of parameters, which can be of local interest, common interest to a subset of agents, and global interest to the whole network. We assume that all the regressors and the measurements are corrupted by additive noise. For these settings, a bias-compensation recursive-least-square algorithm based on a diffusion mode of cooperation is proposed; its stability is obtained via the detailed derivation of convergence in the mean sense. In addition, a closed-form expression for the algorithm’s mean-square deviation is also provided to evaluate the steady-state performance of the whole network. Finally, we present simulation results that indicate the efficiency of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability Statement

All data included in this study are available upon request by contacting the corresponding author.

References

  1. R. Abdolee, B. Champagne, A. H. Sayed. Diffusion LMS for source and process estimation in sensor networks. In 2012 IEEE Statistical Signal Processing Workshop (SSP), pp. 165–168, (2012)

  2. S. Al-Sayed, J. Plata-Chaves, M. Muma, M. Moonen, A. Zoubir, Node-specific diffusion lms-based distributed detection over adaptive networks. IEEE Trans. Signal Process. 66, 11 (2017)

    MathSciNet  MATH  Google Scholar 

  3. A. Bertrand, M. Moonen, Distributed adaptive node-specific signal estimation in fully connected sensor networks–part ii: simultaneous and asynchronous node updating. IEEE Trans. Signal Process. 58(10), 5292–5306 (2010)

    Article  MathSciNet  Google Scholar 

  4. A. Bertrand, M. Moonen, A. H. Sayed. Diffusion-based bias-compensated rls for distributed estimation over adaptive sensor networks. In 2011 19th European Signal Processing Conference, pp 1025–1029, (2011)

  5. A. Bertrand, M. Moonen. Distributed adaptive node-specific signal estimation in fully connected sensor networks—part i: Sequential node updating. In IEEE Transactions on Signal Processing, vol. 58, pp. 5277–5291 (2010)

  6. A. Bertrand, M. Moonen, A.H. Sayed, Diffusion bias-compensated RLS estimation over adaptive networks. IEEE Trans. Signal Process. 59(11), 5212–5224 (2011)

    Article  MathSciNet  Google Scholar 

  7. N. Bogdanovic, J. Plata-Chaves, K. Berberidis, Distributed incremental-based LMS for node-specific adaptive parameter estimation. IEEE Trans. Signal Process. 62(20), 5382–5397 (2014)

    Article  MathSciNet  Google Scholar 

  8. F.S. Cattivelli, A.H. Sayed, Diffusion lms strategies for distributed estimation. IEEE Trans. Signal Process. 58(3), 1035–1048 (2010)

    Article  MathSciNet  Google Scholar 

  9. F.S. Cattivelli, C.G. Lopes, A.H. Sayed, Diffusion recursive least-squares for distributed estimation over adaptive networks. IEEE Trans. Signal Process. 56(5), 1865–1877 (2016)

    Article  MathSciNet  Google Scholar 

  10. J. Chen, C. Richard, A.H. Sayed, Multitask diffusion adaptation over networks. IEEE Trans. Signal Process. 62(16), 4129–4144 (2014)

    Article  MathSciNet  Google Scholar 

  11. J. Chen, A. H. Sayed. On the benefits of diffusion cooperation for distributed optimization and learning. In 21st European Signal Processing Conference (EUSIPCO 2013), pp. 1–5, (2013)

  12. J. Chen, A.H. Sayed, Diffusion adaptation strategies for distributed optimization and learning over networks. IEEE Trans. Signal Process. 60(8), 4289–4305 (2012)

    Article  MathSciNet  Google Scholar 

  13. J. Chen, S. Y. Tu, A. H. Sayed. Distributed optimization via diffusion adaptation. In IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, pp. 281–284, (2011)

  14. J. Chen, C. Richard. Performance analysis of diffusion LMS in multitask networks. In IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, pp. 137–140, (2013)

  15. J. Chen, C. Richard, A. Sayed. Adaptive clustering for multitask diffusion networks. pp. 200–204, 08 (2015)

  16. L. Fan, L. Jia, R. Tao, Y. Wang, Distributed bias-compensated normalized least-mean squares algorithms with noisy input. Sci. China Inf. Sci. 61(11), 112210 (2018)

    Article  Google Scholar 

  17. L.J. Jia, R. Tao, Y. Wang, K. Wada, Forward/backward prediction solution for adaptive noisy FIR filtering. Sci. China 52(6), 1007–1014 (2009)

    MathSciNet  MATH  Google Scholar 

  18. C.G. Lopes, A.H. Sayed, Incremental adaptive strategies over distributed networks. IEEE Trans. Signal Process. 55(8), 4064–4077 (2007)

    Article  MathSciNet  Google Scholar 

  19. C.G. Lopes, A. Sayed, Distributed adaptive incremental strategies: Formulation and performance analysis. vol 3, vol. 06, p. 3 (2006)

  20. J. Lou, L. Jia, R. Tao, Y. Wang, Distributed incremental bias-compensated RLS estimation over multi-agent networks. Sci. China Inf. Sci. 60(3), 032204 (2017)

    Article  Google Scholar 

  21. J. Plata-Chaves, N. Bogdanovic, K. Berberidis, Distributed incremental-based RLS for node-specific parameter estimation over adaptive networks. IEEE Trans. Signal Process. 62(20), 5382–5397 (2013)

    MATH  Google Scholar 

  22. J. Plata-Chaves, M. Hasan Bahari, M. Moonen, Alexander Bertrand. Unsupervised diffusion-based LMS for node-specific parameter estimation over wireless sensor networks. 63(13), 3448–3460 (2015)

  23. J. Plata-Chaves, N. Bogdanovic, K. Berberidis, Distributed diffusion-based LMS for node-specific adaptive parameter estimation. IEEE Trans. Signal Process. 63(13), 3448–3460 (2015)

    Article  MathSciNet  Google Scholar 

  24. A.H. Sayed, Adaptation, learning, and optimization over networks. Found. Trends Mach. Learn. 7(4), 311–801 (2014)

    Article  Google Scholar 

  25. A.H. Sayed. Chapter 9 - diffusion adaptation over networks. In Abdelhak M. Zoubir, Mats Viberg, Rama Chellappa, and Sergios Theodoridis, editors, Academic Press Library in Signal Processing: Volume 3, volume 3 of Academic Press Library in Signal Processing, pp 323 – 453. Elsevier, (2014)

  26. N. Takahashi, I. Yamada, A. Sayed. Diffusion least-mean squares with adaptive combiners, vol. 04, pp. 2845–2848 (2009)

  27. N. Takahashi, I. Yamada, A.H. Sayed, Diffusion least-mean squares with adaptive combiners: formulation and performance analysis. IEEE Trans. Signal Process. 58(9), 4795–4810 (2010)

    Article  MathSciNet  Google Scholar 

  28. M.A. Tinati, A. Rastegarnia, A. Khalili. An incremental least-mean square algorithm with adaptive combiner. vol. 01, pp. 266–269 (2010)

  29. S.Y. Tu, A.H. Sayed, Diffusion strategies outperform consensus strategies for distributed estimation over adaptive networks. IEEE Trans. Signal Process. 60(12), 6217–6234 (2012)

    Article  MathSciNet  Google Scholar 

  30. Y. Wang, W.P. Tay, W. Hu, A multitask diffusion strategy with optimized inter-cluster cooperation. IEEE J. Selected Topics Signal Process. 11(3), 504–517 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lijuan Jia.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was supported in part by the National Natural Science foundation of China under Grants 41927801.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, C., Jia, L., Yang, ZJ. et al. Diffusion Bias-Compensation RLS Estimation Over Noisy Node-Specific Networks. Circuits Syst Signal Process 40, 2564–2583 (2021). https://doi.org/10.1007/s00034-020-01591-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-020-01591-8

Keywords

Navigation