Skip to main content
Log in

Chemical composition and antimicrobial activity of extracts from Gliocladium sp. growing wild in Tunisia

  • Original Research
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

The chemical composition of chloroformic, ethyl acetate, butanolic, and methanolic extracts isolated from the fungus Gliocladium sp. using different solvents of increasing polarity was analyzed by GC-FID and GC-MS. Furthermore, the antimicrobial activity of extracts was tested against five Gram-positive and Gram-negative bacteria and four pathogenic fungi. The tested extracts exhibited an interesting antibacterial activity against all bacteria tested, even against Gram-negative bacteria presenting frequently a higher resistance and against all fungi except Candida albicans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Adams RP (1995) Identification of essential oil components by gas chromatography/mass spectrometry. Allured, Carol Stream, IL, p 469

    Google Scholar 

  • Bauer AW, Kirby WMM, Sherries JC, Tuck M (1966) Antibiotic susceptibility testing by a standardized disc method. Am J Clin Pathol 45:493–496

    CAS  PubMed  Google Scholar 

  • Burt S (2004) Essential oils: their antibacterial properties and potential applications in foods: a review. Int J Food Microbiol 94:223–253

    Article  CAS  PubMed  Google Scholar 

  • Chang ST, Chen PF, Chang SC (2001) Antibacterial activity of leaf essential oils and their constituents from Cinnamomum osmophloeum. J Ethnopharmacol 77:123–127

    Article  CAS  PubMed  Google Scholar 

  • Chen GW, Chung JG, Ho HC, Lin JG (1999) Effect of the garlic compounds diallyl sulphides and diallyl disulphides on acryl amide N-acetyl transferase activity in Klebsiella pneumoniae. J Appl Toxicol 19:75–81

    Article  CAS  PubMed  Google Scholar 

  • Cox SD, Mann CM, Markham JL, Bell HC, Gustafson JE (2000) The mode of antimicrobial action of the essential oil from Malaleuca alternifolia (tea tree oil). J Appl Bacteriol 88:170–175

    CAS  Google Scholar 

  • Delaquis PJ, Stanich K, Girard B, Mazza G (2002) Antimicrobial activity of individual and mixed fractions of dill, cilantro, coriander and eucalyptus essential oils. Int J Food Microbiol 74:101–109

    Article  CAS  PubMed  Google Scholar 

  • Di Pietro A, Lorito M, Hayes CK, Broadway RM, Harman GE (1993) Endochitinase from Gliocladium virens: isolation, characterization, and synergistic antifungal activity in combination with gliotoxin. Phytopathology 83:308–313

    Article  CAS  Google Scholar 

  • Dorman HJD, Deans SG (2000) Antimicrobial agents from plants: antibacterial activity of plant volatile oils. J Appl Microbiol 88:308–316

    Article  CAS  PubMed  Google Scholar 

  • Edziri H, Mastouri M, Ammar S, Mahjoub MA, Brahim S, Kenani A, Zine M, Aouni M (2008) Antibacterial, antioxidant and cytotoxic activities of extracts of Conyza canadensis (L.) Cronquist growing in Tunisia. Med Chem Res. doi:10.1007/s00044-008-9141-0

  • Harman GE, Howell CR, Viterbo A, Chet I, Lorito M (2004) Trichoderma species, opportunistic, avirulent plant symbionts. Nature Rev Microbiol 2:43–56

    Article  CAS  Google Scholar 

  • Hicheri F, Ben Jannet H, Cheriaa J, Jegham S, Mighri Z (2003) Antibacterial activities of a few prepared derivatives of oleanolic acid and of other natural triterpenic compounds. C R Chimi 6:473–483

    Google Scholar 

  • Howell CR, Stipanovic RD, Lumsden RD (1993) Antibiotic production by strains of Gliocladium virens and its relation to the biocontrol of cotton seedling diseases. Biocontrol Sci Technol 3:435–440

    Article  Google Scholar 

  • Marmonier A (1987) Bactériologie médicale. Techniques usuelles. In: Antibiotiques, Technique de diffusion en gélose méthode des disques. SIMEP SA-PARIS, France, pp 238–244

  • Mahjoub MA, Ammar S, Edziri H, Mighri N, Bouraoui A, Mighri Z (2009) Anti-inflammatory and antioxidant activities of some extracts and pure natural products isolated from Rhus tripartitum (Ucria). Med Chem Res. doi:10.1007/s00044-009-9190-z

  • Marino M, Bersani C, Comi G (2001) Impedence measurements to study the antimicrobial activity of essential oils from Lamiacea and Compositae. Int J Food Microbiol 67:187–195

    Article  CAS  PubMed  Google Scholar 

  • May J, Chan CH, King A, Williams L, French GL (2000) Time-kill studies of tea tree oils on clinical isolates. J Antimicrob Chemoth 45:639–643

    Article  CAS  Google Scholar 

  • Merritt S, David E, Wilford MH, Joe S, Gary S (2003) An endophytic Gliocladium sp. of Eucryphia cordifolia producing selective volatile antimicrobial compounds. Plant Sci 165:913–922

    Article  Google Scholar 

  • Moleyar V, Narasimham P (1986) Antifungal activity of some essential oil components. Food Microbiol 3:331–336

    Article  CAS  Google Scholar 

  • Papavizas GC (1985) Trichoderma and Gliocladium: biology, ecology and potential for biontrol. Ann Rev Phytopathol 23:23–54

    Article  Google Scholar 

  • Pauli A (2001) Antimicrobial properties of essential oil constituents. Int J Aromath 11:126–133

    Article  Google Scholar 

  • Paulitz TC, Linderman RG (1991) Lack of antagonism between the biocontrol agent Gliocladium virens and vesicular arbuscular mycorrhizal fungi. New Phytol 117:303–308

    Article  Google Scholar 

  • Pintore G, Usai M, Bradesi P, Juliano C, Boatto G (2002) Chemical composition and antimicrobial activity of Rosmarinus officinalis L. oils from Sardinia and Corsica. Flavour Fragr J 17:15–19

    Article  CAS  Google Scholar 

  • Ronda LA, Rybak MJ (2001) Bactericidal activities of two daptomycin regimens against clinical strains of glycopeptide intermediate-resistant Staphylococcus aureus, vancomycin-resistant Enterococcus faecium and methicillin-resistant Staphylococcus aureus isolates in an in vitro pharmacodynamic model with simulated endocardial vegetations. Antimicrob Agents Ch 45:454–459

    Article  Google Scholar 

  • Senatore F, Napolitano F, Ozcan M (2000) Composition and antibacterial activity of the essential oil from Crithmum maritimum L. (Apiaceae) growing wild in Turkey. Flavour Fragr J 15:186–189

    Article  CAS  Google Scholar 

  • Sharma S, Aneja MK, Mayer J, Much JC, Schloter M (2005) Characterization of bacterial community structure in rhizosphere soil of grain legumes. Microb Ecol 49:407–415

    Article  CAS  PubMed  Google Scholar 

  • Shibamoto T (1987) Retention indices in essential oil analysis. In: Sandra P, Bicchi C (eds) Capillary gas chromatography in essential oil. Dr. Alfred Heuthig, pp 259–275

  • Smith-Palmer A, Stewart J, Fyfe L (1998) Antimicrobial properties of plant essential oils and essences against five important food-borne pathogens. Lett Appl Microbiol 26:118–122

    Article  CAS  PubMed  Google Scholar 

  • Sökmen A, Gulluce M, Askin Akpulat H, Daferera D, Tepe B, Polissiou M (2004) The in vitro antimicrobial and antioxidant activities of the essential oils and methanol extracts of endemic Thymus spathulifolius. Food Control 15:627–634

    Article  Google Scholar 

  • Tsao SM, Yin MC (2001) In vitro antimicrobial activity of four diallyl sulphides occurring naturally in garlic and Chinese leek oils. J Med Microbiol 50:646–649

    CAS  PubMed  Google Scholar 

  • Ultee A, Kets EPW, Smid EJ (1999) Mechanisms of actions of carvacrol on the food-borne pathogen Bacillus cereus. Appl Environ Microbiol 65:4606–4610

    CAS  PubMed  Google Scholar 

  • Vanden Berghe DA, Vlietinck AJ (1991) In: Dey PM, Harbone JB, Hostettman K (eds) Screening methods for antibacterial and antiviral agents from higher plants. Methods in plant biochemistry. Assays for Bioactivity, vol 6. Academic Press, London, pp 47–69

  • Vargas Gil S, Pastor S, March GJ (2009) Quantitative isolation of biocontrol agents Trichoderma spp., Gliocladium spp. and actinomycetes from soil with culture media. Microbiol Res 164:196–205

    Article  CAS  PubMed  Google Scholar 

  • Wilkinson JM, Hipwell M, Ryan T, Cavanagh HMA (2003) Bioactivity of Backhousiacitriodora: antibacterial and antifungal activity. J Agr Food Chem 51:76–81

    Article  CAS  Google Scholar 

  • Yen TB, Chang ST (2008) Synergistic effects of cinnamaldehyde in combination with eugenol against wood decay fungi. Bioresour Technol 99:232–236

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Pr. Biard Jean-François, Laboratory SMAB, Faculty of Pharmacy, Nantes, France, for assistance in the botanical identification and Pr. Amina Bakhrouf, Laboratory of Environment Microbiology, Faculty of Pharmacy, Monastir, Tunisia, for assistance in antibacterial assays.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zine Mighri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liouane, K., Saïdana, D., Edziri, H. et al. Chemical composition and antimicrobial activity of extracts from Gliocladium sp. growing wild in Tunisia. Med Chem Res 19, 743–756 (2010). https://doi.org/10.1007/s00044-009-9227-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-009-9227-3

Keywords

Navigation