Skip to main content

Advertisement

Log in

Bioassay-guided isolation and identification of anti-Alzheimer’s active compounds from Spiranthes sinensis (Pers.) Ames

  • Original Research
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

A bioassay-guided approach was employed to identify the active compounds from the whole herb of Spiranthes sinensis (Pers.) Ames, an orchidaceous medicinal plant. As a result, fourteen compounds were obtained from the active fractions. The structures of the isolates were identified as methyl 4-[2-(butoxymethyl)-5-formyl-pyrrol-1-yl] butyrate (1), 5,3′-dihydroxy-3,7,4′-trimethoxyflavone (2), populnin (3), scutellarein (4), quercetin (5), kaempferol (6), stigmasterol-3-O-β-D-glucopyranoside (7), β-daucosterol (8), trans-p-hydroxy cinnamic acid (9), 4-hydroxybenzoic acid methyl ester (10), 3-(4-tolyloxy)-propanoic acid (11), 2-benzothiazolol (12), ethyl ferulate (13) and kumatakenin (14) by comparing the spectroscopic data from the isolated compounds with the data reported in the literature. Compound 1 was a new natural compound. Compounds 2, 46 and 914 were first reported from the genus Spiranthes. Compound 7 was isolated from S. sinensis for the first time. In addition, compounds 5, 6, 11 and 13 were found to have potent anti-acetylcholinesterase (anti-AChE) activities with IC50 values ranging from 8.63 ± 0.37 to 19.97 ± 1.05 μg/mL, which indicates that S. sinensis has the potential in the development of new anti-Alzheimer’s disease (anti-AD) drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Saleem U, Akhtar R, Anwar F, Shah MA, Chaudary Z, Ayaz M. et al. Neuroprotective potential of Malva neglecta is mediated via down-regulation of cholinesterase and modulation of oxidative stress markers. Metab Brain Dis. 2021;36:889–900. https://doi.org/10.1007/s11011-021-00683-x.

    Article  CAS  PubMed  Google Scholar 

  2. Kou XD, Liu JJ, Chen YH, Yang AH, Shen R. Emodin derivatives with multi-factor anti-AD activities: AChE inhibitor, anti-oxidant and metal chelator. J Mol Struct. 2021;1239:130459. https://doi.org/10.1016/j.molstruc.2021.130459.

  3. Jiang YY, Gao HW, Turdu G. Traditional Chinese medicinal herbs as potential AChE inhibitors for anti-Alzheimer’s disease: a review. Bioorg Chem. 2017;75:50–61. https://doi.org/10.1016/j.bioorg.2017.09.004.

  4. Ferreira JPS, Albuquerque HMT, Cardoso SM, Silva AMS, Silva VLM. Dual-target compounds for Alzheimer’s disease: natural and synthetic AChE and BACE-1 dual-inhibitors and their structure-activity relationship (SAR). Eur J Med Chem. 2021;221:113492 https://doi.org/10.1016/j.ejmech.2021.113492.

    Article  CAS  PubMed  Google Scholar 

  5. Zhang L, Song JK, Kong LL, Yuan TY, Li W, Zhang W, et al. The strategies and techniques of drug discovery from natural products. Pharm Therapeut. 2020;216:107686 https://doi.org/10.1016/j.pharmthera.2020.107686.

  6. Editorial Committee of the Flora of China of Chinese Academy of Science: Flora of China (Volume 17). Beijing: Science Press; 1999. p 228.

  7. Chinese Materia Medica Editorial Board of State Administration of Traditional Chinese Medicine: Chinese Materia Medica (Volume 8). Shanghai: Shanghai Science & Technology Press; 1999. p 755–7.

  8. Liu L, Yin QM, Yan X, Hu C, Wang W, Wang RK, et al. Bioactivity-guided isolation of cytotoxic phenanthrenes from Spiranthes sinensis. J Agric Food Chem. 2019;67:7274–80. https://doi.org/10.1021/acs.jafc.9b01117.

    Article  CAS  PubMed  Google Scholar 

  9. Shie PH, Huang SS, Deng JS, Huang GJ. Spiranthes sinensis suppresses production of pro-inflammatory mediators by down-regulating the NF-κB signaling pathway and up-regulating HO-1/Nrf2 anti-oxidant protein. Am J Chin Med. 2015;43:969–89. https://doi.org/10.1142/S0192415X15500561.

    Article  PubMed  Google Scholar 

  10. Shi DX, Lv RX, Song G, A RN, Lu BN, Zhou WB, et al. Hypoglycemic effect of loroglossin from Spiranthes sinensis (Pers.) Ames on streptozotocin-induced hyperglycemia mice. Chin J N. Drugs. 2020;29:1159–65.

  11. Yan X, Wang W, Liu L. Comparisons of antioxidant activities and contents of total phenols of different extraction parts from Spiranthes sinensis. Food Mach. 2016;32:143–6. https://doi.org/10.13652/j.issn.1003-5788.2016.08.035.

    Article  CAS  Google Scholar 

  12. Lin YL, Huang RL, Don MJ, Kuo YH. Dihydrophenanthrenes from Spiranthes sinensis. J Nat Prod. 2000;63:1608–10. https://doi.org/10.1021/np000170p.

    Article  CAS  PubMed  Google Scholar 

  13. Li CY, Liu J, Su XH, Yuan ZP, Zhong YJ, Li YF, et al. New dimeric phenanthrene and flavone from Spiranthes sinensis. J Asian Nat Prod Res. 2013;15:417–21. https://doi.org/10.1080/10286020.2013.764868.

    Article  CAS  PubMed  Google Scholar 

  14. Tu YB, Huang JW, Li YF. Anticholinesterase, antioxidant, and beta-amyloid aggregation inhibitory constituents from Cremastra appendiculata. Med Chem Res. 2018;27:857–63. https://doi.org/10.1007/s00044-017-2108-2.

  15. Liu L, Zou MJ, Zeng KW, Ye XM, Wang RK, Wang W, et al. Chemical constituents and their antioxidant, anti-Inflammatory and anti-acetylcholinesterase activities from Pholidota cantonensis. Plant Foods Hum Nutr. 2021;76:105–10. https://doi.org/10.1007/s11130-020-00874-4.

  16. Huang JM, Huang FI, Yang CR. Moscatilin ameliorates tau phosphorylation and cognitive deficits in Alzheimer’s disease models. J Nat Prod. 2019;82:1979–88. https://doi.org/10.1021/acs.jnatprod.9b00375.

    Article  CAS  PubMed  Google Scholar 

  17. Adhikary ND, Kwon S, Chung WJ, Koo S. One-pot conversion of carbohydrates into pyrrole-2-carbaldehydes as sustainable platform chemicals. J Org Chem. 2015;80:7693–701. https://doi.org/10.1021/acs.joc.5b01349.

    Article  CAS  PubMed  Google Scholar 

  18. Park KM, Yang MC, Lee KH, Kim KR, Choi SU, Lee KR. Cytotoxic phenolic constituents of Acer tegmentosum maxim. Arch Pharm Res. 2006;29:1086–90. https://doi.org/10.1007/BF02969296.

    Article  CAS  PubMed  Google Scholar 

  19. Monache GD, Scurria R, Vitali A, Botta B, Monacella B, Pasqua G, et al. Two isoflavones and a flavone from the fruits of Maclura pomifera. Phytochemistry. 1994;37:893–8. https://doi.org/10.1016/S0031-9422(00)90379-0.

    Article  Google Scholar 

  20. Wang SS, Huang WZ, Gao XM, Zeng GZ, Tao CY, Cui D, et al. A new flavone from the stem - leaves of Cassia nodosa Buch. – Ham. ex Boxb. J Yunnan Natl Univ. 2019;28:1–4. https://doi.org/10.3969/j.issn.1672-8513.2019.01.001.

    Article  Google Scholar 

  21. Liang C, Yang GC, Li DH, Hu XX, Sun LX. Chemical constituents from Scutellaria barbata. Chin Tradit Herb Drugs. 2016;47:4322–5. https://doi.org/10.7501/j.issn.0253-2670.2016.24.004.

    Article  Google Scholar 

  22. Zhang G, Huang JL. Study on the chemical constituents of Arenaria densissima, West. China J Pharma Sci. 2019;34:1–4. https://doi.org/10.13375/j.cnki.wcjps.2019.01.001.

    Article  Google Scholar 

  23. Zhao ZY. Studies on the chemical constituents in Paris polyphylla Smith var. pseudothibetica H. Li. Master’s degree thesis. Tianjin University; 2010.

  24. Esmaeili MA, Farimani MM. Inactivation of PI3K/Akt pathway and upregulation of PTEN gene are involved in daucosterol, isolated from Salvia sahendica, induced apoptosis in human breast adenocarcinoma cells. S Afr J Bot. 2014;93:37–47. https://doi.org/10.1016/j.sajb.2014.03.010.

    Article  CAS  Google Scholar 

  25. Cheng SY, Alaa E, Yu Y, Li N, Zheng MS. Chemical constituents from the Bark of Ulmus pumila. Chin Med Mat. 2020;43:862–5. https://doi.org/10.13863/j.issn1001-4454.2020.04.015.

    Article  CAS  Google Scholar 

  26. Wei J, Yang XS, Zhu HY, Hao XJ. Chemical constituents of Vaccinium carlesii. Guihaia. 2008;28:558–60.

    CAS  Google Scholar 

  27. Yoshioka T, Inokuchi T, Fujioka S, Kimura Y. Phenolic compounds and flavonoids as plant growth regulators from fruit and leaf of Vitex rotundifolia. Z Naturforsch C J Biosci 2004;59:509–14. https://doi.org/10.1515/znc-2004-7-810.

    Article  CAS  PubMed  Google Scholar 

  28. Qin LL, Hu HW, Feng D, Cao YM, Jin MY, Song CX, et al. Chemical constituents from Ajuga ovalifolia var. Calantha. Chin Med Mat. 2018;41:2101–4. https://doi.org/10.13863/j.issn1001-4454.2018.09.017.

    Article  Google Scholar 

  29. Ren G, Chen YT, Ye JB, Zhong GY, Xiao CY, Deng WZ, et al. Phytochemical investigation of leaves of Dendrobium officinale. Chin Tradit Herb Drugs. 2020;51:3637–44. https://doi.org/10.7501/j.issn.0253-2670.2020.14.005.

    Article  Google Scholar 

  30. Liu J, Li GQ, Wu X, Li YL, Wang GC. Chemical constituents from Glechoma longituba. Chin J Chin Mater Med. 2014;39:695–8. https://doi.org/10.4268/cjcmm20140428.

    Article  CAS  Google Scholar 

  31. Bian MQ, Wang HQ, Kang J, Chen RY, Yang YF, Wu HZ. Flavonoids from the seeds of Alpinia galanga Willd. Acta Pharm Sin. 2014;49:359–62. https://doi.org/10.16438/j.0513-4870.2014.03.005.

    Article  CAS  Google Scholar 

  32. Ellman GL, Courtney KD, Andres V Jr, Feather-Stone RM. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharm. 1961;7:88–95. https://doi.org/10.1016/0006-2952(61)90145-9.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was financially supported by the following projects: Qinglan Project of Jiangsu Province, Qinglan Project of Yangzhou University (20180210), High-end Talents Supporting Project of Yangzhou University, and Postgraduate Practice Innovation Project in Jiangsu Province (SJCX20_1385).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liang Liu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zou, M., Wang, R., Yin, Q. et al. Bioassay-guided isolation and identification of anti-Alzheimer’s active compounds from Spiranthes sinensis (Pers.) Ames. Med Chem Res 30, 1849–1855 (2021). https://doi.org/10.1007/s00044-021-02777-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-021-02777-8

Keywords

Navigation