Skip to main content

Advertisement

Log in

Planning benchmark study for SBRT of early stage NSCLC

Results of the DEGRO Working Group Stereotactic Radiotherapy

Planvergleichsstudie bei der SBRT des NSCLC im Frühstadium

Ergebnisse der DEGRO AG Stereotaxie

  • Original Article
  • Published:
Strahlentherapie und Onkologie Aims and scope Submit manuscript

Abstract

Purpose

The aim was to evaluate stereotactic body radiation therapy (SBRT) treatment planning variability for early stage nonsmall cell lung cancer (NSCLC) with respect to the published guidelines of the Stereotactic Radiotherapy Working Group of the German Society for Radiation Oncology (DEGRO).

Materials and methods

Planning computed tomography (CT) scan and the structure sets (planning target volume, PTV; organs at risk, OARs) of 3 patients with early stage NSCLC were sent to 22 radiotherapy departments with SBRT experience: each department was asked to prepare a treatment plan according to the DEGRO guidelines. The prescription dose was 3 fractions of 15 Gy to the 65% isodose.

Results

In all, 87 plans were generated: 36 used intensity-modulated arc therapy (IMAT), 21 used three-dimensional conformal radiation therapy (3DCRT), 6 used static field intensity-modulated radiation therapy (SF-IMRT), 9 used helical radiotherapy and 15 used robotic radiosurgery. PTV dose coverage and simultaneously kept OARs doses were within the clinical limits published in the DEGRO guidelines. However, mean PTV dose (mean 58.0 Gy, range 52.8–66.4 Gy) and dose conformity indices (mean 0.75, range 0.60–1.00) varied between institutions and techniques (p ≤ 0.02). OARs doses varied substantially between institutions, but appeared to be technique independent (p = 0.21).

Conclusion

All studied treatment techniques are well suited for SBRT of early stage NSCLC according to the DEGRO guidelines. Homogenization of SBRT practice in Germany is possible through the guidelines; however, detailed treatment plan characteristics varied between techniques and institutions and further homogenization is warranted in future studies and recommendations. Optimized treatment planning should always follow the ALARA (as low as reasonably achievable) principle.

Zusammenfassung

Hintergrund

Ziel war die Untersuchung der Variabilität der Bestrahlungsplanung der stereotaktischen Strahlentherapie (SBRT) für das nicht-kleinzellige Bronchialkarzinom (NSCLC) im Frühstadium in Bezug auf die veröffentlichten Empfehlungen der Arbeitsgemeinschaft Stereotaxie der Deutschen Gesellschaft für Radioonkologie (DEGRO).

Material und Methoden

Planungscomputertomographie und Strukturdatensätze (Planungszielvolumen, PTV; Risikoorgane, OARs) von 3 NSCLC-Patienten im Frühstadium wurden an 22 Strahlentherapieabteilungen mit SBRT-Erfahrung gesendet: Jede Abteilung sollte einen Behandlungsplan nach DEGRO-Richtlinie generieren. Die Verschreibungsdosis betrug 3 Fraktionen mit je 15 Gy auf die 65%-Isodose.

Ergebnisse

Es wurden 87 Pläne erzeugt: 36 mit intensitätsmodulierter Arc-Therapie (IMAT), 21 mit dreidimensionaler konformaler Strahlentherapie (3D-CRT), 6 mit intensitätsmodulierte Radiotherapie mit statischen Feldern (SF-IMRT), 9 mit helikaler Strahlentherapie und 15 mit robotergestützter Radiochirurgie. PTV-Dosisabdeckung und alle gleichzeitig erfassten OAR-Dosen hielten sich an die klinischen Grenzwerte der DEGRO-Richtlinie. Dennoch variierten durchschnittliche PTV-Dosen (Mittelwert 58,0 Gy; Spanne 52,8–66,4 Gy) und Dosiskonformitätsindizes (Mittelwert 0,75; Spanne 0,60–1,00) zwischen Institutionen und Techniken (p ≤ 0,02). OAR-Dosen variierten erheblich zwischen den Institutionen, aber unabhängig von der Technik (p = 0,21).

Schlussfolgerung

Alle untersuchten Behandlungstechniken eignen sich gemäß den DEGRO-Empfehlungen für die SBRT von NSCLC im Frühstadium. Die Homogenisierung der SBRT-Anwendung in Deutschland ist durch die Richtlinien möglich; jedoch waren einige Charakteristika der Behandlungspläne stark technik- und benutzerabhängig und eine weitere Homogenisierung ist für künftige Studien und Empfehlungen nötig. Eine optimierte Bestrahlungsplanung sollte immer dem ALARA-Prinzip (so niedrig wie vernünftig erreichbar) folgen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Rocco G, Morabito A, Leone A et al (2016) Management of non-small cell lung cancer in the era of personalized medicine. Int J Biochem Cell Biol 78:173–179

    Article  CAS  PubMed  Google Scholar 

  2. Guckenberger M, Allgauer M, Appold S et al (2013) Safety and efficacy of stereotactic body radiotherapy for stage I non-small-cell lung cancer in routine clinical practice. Patterns-of-care and outcome analysis. J Thorac Oncol 8(8):1050–1058

    Article  CAS  PubMed  Google Scholar 

  3. Cascales A, Martinetti F, Belemsagha D et al (2014) Challenges in the treatment of early non-small cell lung cancer: what is the standard, what are the challenges and what is the future for radiotherapy? Transl Lung Cancer Res 3(4):195–204

    PubMed  PubMed Central  Google Scholar 

  4. Maquilan G, Timmerman R (2016) Stereotactic body radiation therapy for early-stage lung cancer. Cancer J 22(4):274–279

    Article  PubMed  Google Scholar 

  5. Chang JY, Senan S, Paul MA et al (2015) Stereotactic ablative radiotherapy versus lobectomy for operable stage I non-small-cell lung cancer: a pooled analysis of two randomised trials. Lancet Oncol 16(6):630–637

    Article  PubMed  PubMed Central  Google Scholar 

  6. Guckenberger M, Klement RJ, Allgäuer M et al (2016) Local tumor control probability modeling of primary and secondary lung tumors in stereotactic body radiotherapy. Radiother Oncol 118(3):485–491

    Article  PubMed  Google Scholar 

  7. Guckenberger M, Andratschke N, Alheit H et al (2014) Definition of stereotactic body radiotherapy: principles and practice for the treatment of stage I non-small cell lung cancer. Strahlenther Onkol 190(1):26–33

    Article  CAS  PubMed  Google Scholar 

  8. Büther F, Ernst I, Dawood M et al (2010) Detection of respiratory tumour motion using intrinsic list mode-driven gating in positron emission tomography. Eur J Nucl Med Mol Imaging 37(12):2315–2327

    Article  PubMed  Google Scholar 

  9. ICRU (1993) Prescribing, recording and reporting photon beam therapy. J ICRU os26(1):NP (ICRU Report 50)

    Google Scholar 

  10. ICRU (1999) Prescribing, recording and reporting photon beam therapy (Supplement to ICRU Report 50). J ICRU os32(1):NP (ICRU Report 62)

    Google Scholar 

  11. ICRU (2010) Prescribing, recording, and reporting photon-beam intensity-modulated radiation therapy (IMRT). J ICRU 10(1):NP (ICRU Report 83)

    Google Scholar 

  12. van’t Riet A, Mak AC, Moerland MA et al (1997) A conformation number to quantify the degree of conformality in brachytherapy and external beam irradiation: application to the prostate. Int J Radiat Oncol Biol Phys 37(3):731–736

    Article  Google Scholar 

  13. Knöös T, Kristensen I, Nilsson P (1998) Volumetric and dosimetric evaluation of radiation treatment plans: radiation conformity index. Int J Radiat Oncol Biol Phys 42(5):1169–1176

    Article  PubMed  Google Scholar 

  14. Paddick I (2000) A simple scoring ratio to index the conformity of radiosurgical treatment plans. Technical note. J Neurosurg 93(Suppl 3):219–222

    PubMed  Google Scholar 

  15. Lomax NJ, Scheib SG (2003) Quantifying the degree of conformity in radiosurgery treatment planning. Int J Radiat Oncol Biol Phys 55(5):1409–1419

    Article  PubMed  Google Scholar 

  16. Wagner TH, Bova FJ, Friedman WA et al (2003) A simple and reliable index for scoring rival stereotactic radiosurgery plans. Int J Radiat Oncol Biol Phys 57(4):1141–1149

    Article  PubMed  Google Scholar 

  17. Wu VW, Kwong DL, Sham JS (2004) Target dose conformity in 3‑dimensional conformal radiotherapy and intensity modulated radiotherapy. Radiother Oncol 71(2):201–206

    Article  CAS  PubMed  Google Scholar 

  18. Van Gellekom MP, Moerland MA, Battermann JJ et al (2004) MRI-guided prostate brachytherapy with single needle method – a planning study. Radiother Oncol 71(3):327–332

    Article  PubMed  Google Scholar 

  19. Kataria T, Sharma K, Subramani V et al (2012) Homogeneity Index: An objective tool for assessment of conformal radiation treatments. J Med Phys 37(4):207–213

    Article  PubMed  PubMed Central  Google Scholar 

  20. Haverkamp U, Norkus D, Kriz J et al (2014) Optimization by visualization of indices. Strahlenther Onkol 190(11):1053–1059

    Article  PubMed  Google Scholar 

  21. Blanck O, Wang L, Baus W et al (2016) Inverse treatment planning for spinal robotic radiosurgery: an international multi-institutional benchmark trial. J Appl Clin Med Phys 17(3):6151

    Article  Google Scholar 

  22. Song DY, Kavanagh BD, Benedict SH et al (2004) Stereotactic body radiation therapy. Rationale, techniques, applications, and optimization. Oncology (Williston Park, NY) 18(11):1419–1430 (discussion 1430, 1432, 1435–6)

    Google Scholar 

  23. Giglioli FR, Strigari L, Ragona R et al (2016) Lung stereotactic ablative body radiotherapy: A large scale multi-institutional planning comparison for interpreting results of multi-institutional studies. Phys Med 32(4):600–606

    Article  PubMed  Google Scholar 

  24. Zhang GG, Ku L, Dilling TJ et al (2011) Volumetric modulated arc planning for lung stereotactic body radiotherapy using conventional and unflattened photon beams: a dosimetric comparison with 3D technique. Radiat Oncol 6:152

    Article  PubMed  PubMed Central  Google Scholar 

  25. Holt A, van Vliet-Vroegindeweij C, Mans A et al (2011) Volumetric-modulated arc therapy for stereotactic body radiotherapy of lung tumors: a comparison with intensity-modulated radiotherapy techniques. Int J Radiat Oncol Biol Phys 81(5):1560–1567

    Article  PubMed  Google Scholar 

  26. Atalar B, Aydin G, Gungor G et al (2012) Dosimetric comparison of robotic and conventional linac-based stereotactic lung irradiation in early-stage lung cancer. Technol Cancer Res Treat 11(3):249–255

    Article  CAS  PubMed  Google Scholar 

  27. Weyh A, Konski A, Nalichowski A et al (2013) Lung SBRT: dosimetric and delivery comparison of RapidArc, TomoTherapy, and IMRT. J Appl Clin Med Phys 14(4):4065

    Article  PubMed  Google Scholar 

  28. Chan MK, Kwong DL, Law GM et al (2013) Dosimetric evaluation of four-dimensional dose distributions of CyberKnife and volumetric-modulated arc radiotherapy in stereotactic body lung radiotherapy. J Appl Clin Med Phys 14(4):4229

    PubMed  Google Scholar 

  29. Andratschke N, Parys A, Stadtfeld S et al (2016) Clinical results of mean GTV dose optimized robotic guided SBRT for liver metastases. Radiat Oncol 11:74

    Article  PubMed  PubMed Central  Google Scholar 

  30. Bibault JE, Mirabel X, Lacornerie T et al (2015) Adapted prescription dose for Monte Carlo algorithm in lung SBRT: clinical outcome on 205 patients. PLOS ONE 10(7):e0133617

    Article  PubMed  PubMed Central  Google Scholar 

  31. Lacornerie T, Lisbona A, Mirabel X et al (2014) GTV-based prescription in SBRT for lung lesions using advanced dose calculation algorithms. Radiat Oncol 9:223

    Article  PubMed  PubMed Central  Google Scholar 

  32. Grimm J, LaCouture T, Croce R et al (2011) Dose tolerance limits and dose volume histogram evaluation for stereotactic body radiotherapy. J Appl Clin Med Phys 12(2):3368

  33. Ojala JJ, Kapanen MK, Hyödynmaa SJ et al (2014) Performance of dose calculation algorithms from three generations in lung SBRT: comparison with full Monte Carlo-based dose distributions. J Appl Clin Med Phys 15(2):4662

    Article  PubMed  Google Scholar 

  34. Zheng D, Zhu X, Zhang Q et al (2016) Target dose conversion modeling from pencil beam (PB) to Monte Carlo (MC) for lung SBRT. Radiat Oncol 11:83

    Article  PubMed  PubMed Central  Google Scholar 

  35. Darby SC, Ewertz M, McGale P et al (2013) Risk of ischemic heart disease in women after radiotherapy for breast cancer. N Engl J Med 368(11):987–998

    Article  CAS  PubMed  Google Scholar 

  36. Wang K, Eblan MJ, Deal AM et al (2017) Cardiac toxicity after radiotherapy for stage III non-small-cell lung cancer: pooled analysis of dose-escalation trials delivering 70 to 90 Gy. J Clin Oncol:JCO2016700229. doi:10.1200/JCO.2016.70.0229

  37. Keall PJ, Mageras GS, Balter JM et al (2016) The management of respiratory motion in radiation oncology report of AAPM Task Group 76. Med Phys 33(10):3874–3900

    Article  Google Scholar 

  38. Benedict SH, Yenice KM, Followill D et al (2010) Stereotactic body radiation therapy: the report of AAPM Task Group 101. Med Phys 37(8):4078–4101

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christos Moustakis Dipl.-Phys.

Ethics declarations

Conflict of interest

C. Moustakis, O. Blanck, F. Ebrahimi, M. ka heng Chan, I. Ernst, T. Krieger, M.-N. Duma, M. Oechsner, U. Ganswindt, C. Heinz, H. Alheit, H. Blank, U. Nestle, R. Wiehle, C. Kornhuber, C. Ostheimer, C. Petersen, G. Pollul, W. Baus, G. Altenstein, E. Beckers, K. Jurianz, F. Sterzing, M. Kretschmer, H. Seegenschmiedt, T. Maass, S. Droege, U. Wolf, J. Schoeffler, U. Haverkamp, H. Eich and M. Guckenberger declare that they have no competing interests.

Ethical standards

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moustakis, C., Blanck, O., Ebrahimi Tazehmahalleh, F. et al. Planning benchmark study for SBRT of early stage NSCLC. Strahlenther Onkol 193, 780–790 (2017). https://doi.org/10.1007/s00066-017-1151-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00066-017-1151-8

Keywords

Schlüsselwörter

Navigation