Skip to main content
Log in

Influence of unstable ankle fracture (type Weber C), osteosynthesis and syndesmotic transfixation on position of fibula in tibiofibular notch: a cadaveric study

  • Original Article
  • Published:
European Journal of Trauma and Emergency Surgery Aims and scope Submit manuscript

Abstract

Purpose

The aim of the cadaveric study was to determine the effects of an unstable ankle fracture on the position of the fibula in the incisural notch and subsequently to evaluate the alterations resulting from the individual steps of a guideline-based osteosynthesis.

Methods

In a specimen model with 20 uninjured fresh-frozen lower legs with induced unstable fracture of the fibula (type Weber C), a guideline-based osteosynthesis was performed. The distances between the anterior and posterior edges of the tibia and fibula and in the center of the incisural notch, as well as the rotation angle of the fibula, were measured in the acquired 3D image data sets and were compared with the intact condition of the ankle mortise.

Results

The dissection of the syndesmosis and osteotomy of the fibula results in an external rotation the fibula by 3.6° (p = 0.000), while the distance between the anterior edge of the tibia and the fibula widens by 1.86 mm (p = 0.000). After osteosynthesis of the fibula and transfixation of the syndesmotic region using a positioning screw, the posterior distance is no longer substantially increased by 0.22 mm (p = 0.103) but also reduced by 0.1 mm (p = 0.104) in the tibiofibular notch. The external rotation of the fibula remains slightly increased by just 0.45° (p = 0.009).

Conclusion

The results indicate that there is a tendency for over-compression when adjusting the tibiofibular distance and that the fibula in the tibiofibular notch tends to remain slightly rotated externally.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Court-Brown CM, Caesar B. Epidemiology of adult fractures: a review. Injury. 2006;37(8):691–7. https://doi.org/10.1016/j.injury.2006.04.130.

    Article  Google Scholar 

  2. Daly PJ, Fitzgerald RH Jr, Melton LJ, Ilstrup DM. Epidemiology of ankle fractures in Rochester. Minn Acta Orthop Scand. 1987;58(5):539–44. https://doi.org/10.3109/17453678709146395.

    Article  CAS  Google Scholar 

  3. Belatti DA, Phisitkul P. Economic burden of foot and ankle surgery in the US Medicare population. Foot Ankle Int. 2014;35(4):334–40. https://doi.org/10.1177/1071100713519777.

    Article  PubMed  Google Scholar 

  4. Thakore RV, Hooe BS, Considine P, Sathiyakumar V, Onuoha G 2nd, Hinson JK, et al. Ankle fractures and employment: a life-changing event for patients. Disabil Rehabil. 2015;37(5):417–22. https://doi.org/10.3109/09638288.2014.923525.

    Article  PubMed  Google Scholar 

  5. de Souza LJ, Gustilo RB, Meyer TJ. Results of operative treatment of displaced external rotation-abduction fractures of the ankle. J Bone Joint Surg Am. 1985;67(7):1066–74.

    Article  Google Scholar 

  6. Xenos JS, Hopkinson WJ, Mulligan ME, Olson EJ, Popovic NA. The tibiofibular syndesmosis. Evaluation of the ligamentous structures, methods of fixation, and radiographic assessment. J Bone Joint Surg Am. 1995;77(6):847–56. https://doi.org/10.2106/00004623-199506000-00005.

    Article  CAS  PubMed  Google Scholar 

  7. Thordarson DB, Motamed S, Hedman T, Ebramzadeh E, Bakshian S. The effect of fibular malreduction on contact pressures in an ankle fracture malunion model. J Bone Joint Surg Am. 1997;79(12):1809–15. https://doi.org/10.2106/00004623-199712000-00006.

    Article  CAS  PubMed  Google Scholar 

  8. Ramsey PL, Hamilton W. Changes in tibiotalar area of contact caused by lateral talar shift. J Bone Joint Surg Am. 1976;58(3):356–7.

    Article  CAS  Google Scholar 

  9. Franke J, von Recum J, Suda AJ, Grutzner PA, Wendl K. Intraoperative three-dimensional imaging in the treatment of acute unstable syndesmotic injuries. J Bone Joint Surg Am. 2012;94(15):1386–90. https://doi.org/10.2106/JBJS.K.01122.

    Article  PubMed  Google Scholar 

  10. Gardner MJ, Demetrakopoulos D, Briggs SM, Helfet DL, Lorich DG. Malreduction of the tibiofibular syndesmosis in ankle fractures. Foot Ankle Int. 2006;27(10):788–92. https://doi.org/10.1177/107110070602701005.

    Article  PubMed  Google Scholar 

  11. Miller AN, Carroll EA, Parker RJ, Boraiah S, Helfet DL, Lorich DG. Direct visualization for syndesmotic stabilization of ankle fractures. Foot Ankle Int. 2009;30(5):419–26. https://doi.org/10.3113/fai-2009-0419.

    Article  PubMed  Google Scholar 

  12. Summers HD, Sinclair MK, Stover MD. A reliable method for intraoperative evaluation of syndesmotic reduction. J Orthop Trauma. 2013;27(4):196–200. https://doi.org/10.1097/BOT.0b013e3182694766.

    Article  PubMed  Google Scholar 

  13. Vetter SY, Euler F, von Recum J, Wendl K, Grutzner PA, Franke J. Impact of intraoperative cone beam computed tomography on reduction quality and implant position in treatment of tibial plafond fractures. Foot Ankle Int. 2016;37(9):977–82. https://doi.org/10.1177/1071100716650532.

    Article  PubMed  Google Scholar 

  14. Moon SW, Kim JW. Usefulness of intraoperative three-dimensional imaging in fracture surgery: a prospective study. J Orthop Sci. 2014;19(1):125–31. https://doi.org/10.1007/s00776-013-0475-1.

    Article  PubMed  Google Scholar 

  15. Atesok K, Finkelstein J, Khoury A, Peyser A, Weil Y, Liebergall M, et al. The use of intraoperative three-dimensional imaging (ISO-C-3D) in fixation of intraarticular fractures. Injury. 2007;38(10):1163–9. https://doi.org/10.1016/j.injury.2007.06.014.

    Article  CAS  PubMed  Google Scholar 

  16. Kendoff D, Citak M, Gardner MJ, Stübig T, Krettek C, Hüfner T. Intraoperative 3D imaging: value and consequences in 248 cases. J Trauma. 2009;66(1):232–8. https://doi.org/10.1097/TA.0b013e31815ede5d.

    Article  PubMed  Google Scholar 

  17. Richter M, Geerling J, Zech S, Goesling T, Krettek C. Intraoperative three-dimensional imaging with a motorized mobile C-arm (SIREMOBIL ISO-C-3D) in foot and ankle trauma care: a preliminary report. J Orthop Trauma. 2005;19(4):259–66. https://doi.org/10.1097/01.bot.0000151822.10254.db.

    Article  PubMed  Google Scholar 

  18. Richter M, Zech S. Intraoperative 3-dimensional imaging in foot and ankle trauma-experience with a second-generation device (ARCADIS-3D). J Orthop Trauma. 2009;23(3):213–20. https://doi.org/10.1097/BOT.0b013e31819867f6.

    Article  PubMed  Google Scholar 

  19. Franke J, von Recum J, Suda AJ, Grützner PA, Wendl K. Intraoperative three-dimensional imaging in the treatment of acute unstable syndesmotic injuries. J Bone Joint Surg Am. 2012;94(15):1386–90. https://doi.org/10.2106/jbjs.K.01122.

    Article  PubMed  Google Scholar 

  20. Prior CP, Widnall JC, Rehman AK, Weller DM, Wood EV. A simplified, validated protocol for measuring fibular reduction on ankle CT. Foot Ankle Surg. 2017;23(1):53–6. https://doi.org/10.1016/j.fas.2016.02.005.

    Article  PubMed  Google Scholar 

  21. Vetter SY, Gassauer M, Uhlmann L, Swartman B, Schnetzke M, Keil H, et al. A standardised computed tomography measurement method for distal fibular rotation. Eur J Trauma Emerg Surg. 2019. https://doi.org/10.1007/s00068-019-01120-6.

    Article  PubMed  Google Scholar 

  22. Lauge N. Fractures of the ankle; analytic historic survey as the basis of new experimental, roentgenologic and clinical investigations. Arch Surg. 1948;56(3):259–317.

    Article  CAS  Google Scholar 

  23. Tang CW, Roidis N, Vaishnav S, Patel A, Thordarson DB. Position of the distal fibular fragment in pronation and supination ankle fractures: a CT evaluation. Foot Ankle Int. 2003;24(7):561–6. https://doi.org/10.1177/107110070302400707.

    Article  PubMed  Google Scholar 

  24. Vetter SY, Palesche N, Beisemann N, Schnetzke M, Keil H, Kirsch J, et al. Influence of syndesmotic injuries and posterior malleolar ankle fractures on fibula position in the ankle joint: a cadaveric study. Eur J Trauma Emerg Surg. 2020. https://doi.org/10.1007/s00068-019-01292-1.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Miller AN, Barei DP, Iaquinto JM, Ledoux WR, Beingessner DM. Iatrogenic syndesmosis malreduction via clamp and screw placement. J Orthop Trauma. 2013;27(2):100–6. https://doi.org/10.1097/BOT.0b013e31825197cb.

    Article  PubMed  Google Scholar 

  26. Phisitkul P, Ebinger T, Goetz J, Vaseenon T, Marsh JL. Forceps reduction of the syndesmosis in rotational ankle fractures: a cadaveric study. J Bone Joint Surg Am. 2012;94(24):2256–61. https://doi.org/10.2106/jbjs.K.01726.

    Article  PubMed  Google Scholar 

  27. Hunt KJ, Phisitkul P, Pirolo J, Amendola A. High ankle sprains and syndesmotic injuries in athletes. J Am Acad Orthop Surg. 2015;23(11):661–73. https://doi.org/10.5435/jaaos-d-13-00135.

    Article  PubMed  Google Scholar 

  28. Magan A, Golano P, Maffulli N, Khanduja V. Evaluation and management of injuries of the tibiofibular syndesmosis. Br Med Bull. 2014;111(1):101–15. https://doi.org/10.1093/bmb/ldu020.

    Article  PubMed  Google Scholar 

  29. Kumar A, Passey J, Goel L, Chouhan D, Agnihotri A, Chauhan S, et al. New landmarks for ideal positioning of syndesmotic screw: a computerised tomography based analysis and radiographic simulation. Int Orthop. 2020;44(4):665–75. https://doi.org/10.1007/s00264-019-04467-y.

    Article  PubMed  Google Scholar 

  30. Hamid N, Loeffler BJ, Braddy W, Kellam JF, Cohen BE, Bosse MJ. Outcome after fixation of ankle fractures with an injury to the syndesmosis: the effect of the syndesmosis screw. J Bone Joint Surg Br. 2009;91(8):1069–73. https://doi.org/10.1302/0301-620x.91b8.22430.

    Article  CAS  PubMed  Google Scholar 

  31. Miller AN, Paul O, Boraiah S, Parker RJ, Helfet DL, Lorich DG. Functional outcomes after syndesmotic screw fixation and removal. J Orthop Trauma. 2010;24(1):12–6. https://doi.org/10.1097/BOT.0b013e3181c6e199.

    Article  PubMed  Google Scholar 

  32. Grass R, Herzmann K, Biewener A, Zwipp H. Injuries of the inferior tibiofibular syndesmosis. Unfallchirurg. 2000;103(7):520–32.

    Article  CAS  Google Scholar 

  33. Rammelt S, Grass R, Zwipp H. Ankle fractures. Unfallchirurg. 2008;111(6):421–37. https://doi.org/10.1007/s00113-008-1460-6.

    Article  CAS  PubMed  Google Scholar 

  34. Vetter SY, Euler J, Beisemann N, Swartman B, Keil H, Grützner PA, et al. Validation of radiological reduction criteria with intraoperative cone beam CT in unstable syndesmotic injuries. Eur J Trauma Emerg Surg. 2020. https://doi.org/10.1007/s00068-020-01299-z.

    Article  PubMed  PubMed Central  Google Scholar 

  35. van den Bekerom MP. Diagnosing syndesmotic instability in ankle fractures. World J Orthop. 2011;2(7):51–6. https://doi.org/10.5312/wjo.v2.i7.51.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Beumer A, van Hemert WLW, Niesing R, Entius CAC, Ginai AZ, Mulder PGH, et al. Radiographic measurement of the distal tibiofibular syndesmosis has limited use. Clin Orthop Relat Res. 2004;423:227–34. https://doi.org/10.1097/01.blo.0000129152.81015.ad.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sven Vetter.

Ethics declarations

Conflict of interest

The authors declare the following potential conflicts of interest concerning the research, authorship, and publication of this article. The BG Trauma Center Ludwigshafen and Siemens Healthcare AG in Erlangen, Germany cooperate in the field of medical imaging and image-guided surgery. This cooperation influenced neither the outcome of the study nor the manuscript.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the institutional and/or national research committee’s ethical standards and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. The ethics committee of the Medical Faculty of Heidelberg approved the study. The application was submitted on 13 January 2014 and was accepted on 17 February 2014 with the registration number S-013/2014.

Informed consent

The declarations of consent of the body donors are available at the Institute of Anatomy and Cell Biology of the University of Heidelberg.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Privalov, M., Swartman, B., Beisemann, N. et al. Influence of unstable ankle fracture (type Weber C), osteosynthesis and syndesmotic transfixation on position of fibula in tibiofibular notch: a cadaveric study. Eur J Trauma Emerg Surg 48, 1445–1452 (2022). https://doi.org/10.1007/s00068-021-01721-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00068-021-01721-0

Keywords

Navigation