Skip to main content

Advertisement

Log in

On the geological availability of germanium

  • Article
  • Published:
Mineralium Deposita Aims and scope Submit manuscript

An Erratum to this article was published on 19 January 2014

Abstract

Based on a detailed statistical analysis of chemical data published in the scientific literature, estimates were made of the minimum amounts of recoverable Ge contained within sulphidic zinc ores and coals, given current processing technologies. It is expected that at least 119 kt (∼7 kt in zinc ores and ∼112 kt in coal) of recoverable germanium exist within proven reserves (at present stage of knowledge) at grades in excess of 100 ppm in sphalerite and 200 ppm in coal, while at least 440 kt (∼50 kt in zinc ores and ∼390 kt in coal) should become recoverable in the future, being associated to coal reserves at 8–200 ppm Ge and zinc resources containing in excess of 100 ppm Ge in sphalerite. Mississippi Valley Type (MVT) deposits are expected to be the most important hosts of germanium-rich sphalerite, while both brown and hard coals are expected to be equally important as hosts of germanium. The approach taken in this publication shows that reliable minimum estimates for the availability of by-product metals lacking suitable reserve/resource data may be attained by using robust statistical methods and geochemical data published in the scientific literature

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Angerer G, Erdmann L, Markscheider-Weidemann F, Scharp M, Lüllmann A, Handke V, Marwede M (2009) Rohstoffe für Zukunftstechnologien. Einfluss des branchenspezifischen Rohstoffbedarfs in rohstoffintensiven Zukunftstechnologien auf die zukünftige Rohstoffnachfrage, 2nd edn. Fraunhofer IRB Verlag, Stuttgart

    Google Scholar 

  • Bernstein LR (1985) Germanium geochemistry and mineralogy. Geochim Cosmochim Acta 49:2409–2422. doi:10.1016/0016-7037(85)90241-8

    Article  Google Scholar 

  • Bernstein LR (1986) Geology and mineralogy of the Apex germanium-gallium mine, Washington County. USGS Bulletin, Utah, 1577

    Google Scholar 

  • Brownfield ME, Steinshouser DW, Povarennykh MYu, Eriomin I, Shpirt M, Meitov Ye, Sharova I, Goriunova N, Zyrianova MV (2001) Coal quality and resources of the former Soviet Union – An ArcView project. USGS Open File Report 01–104

  • Buchanan GH (1916) The occurrence of germanium in zinc materials. J Ind Eng Chem 8:585–586. doi:10.1021/i500007a002

    Article  Google Scholar 

  • Buchanan GH (1917) The Occurrence of Germanium in Missouri and Wisconsin Blendes. J Ind Eng Chem 9:661–663. doi:10.1021/ie50091a015

    Article  Google Scholar 

  • Burnham CW (1959) Metallogenic provinces of the Southwestern United States and Northern Mexico. New Mexico Bureau of Mines and Mineral Resources Bulletin 65

  • Cerny I, Schroll E (1995) Heimische Vorräte an Spezialmetallen (Ga, In, Tl, Ge, Se, Te und Cd) in Blei-Zink- und anderen Erzen. Arch f Lagerst Forsch Geol B-A 18:5–33

    Google Scholar 

  • Chatterjee AK (1979) Geology of the Meat Cove zinc deposit, Cape Breton Island, Nova Scotia. Nova Scot Dep Mine Paper 79(3):1–27

    Google Scholar 

  • Commission E (2010) Critical raw materials for the EU. Report of the Ad-hoc Working Group on Defining Critical Raw Materials. Brussels, Belgium

    Google Scholar 

  • Council WE (2010) 2010 Survey of energy resources. World Energy Council, London, 608 pp

    Google Scholar 

  • Cox DP, Singer DA (1986) Mineral deposit models. USGS Bulletin 1693

  • Dennis LM, Papish J (1921) Germanium I. Extraction from germanium-bearing zinc oxide. Non-occurrence in samarskite. J Am Chem Soc 43:2131–2143. doi:10.1021/ja01443a001

    Article  Google Scholar 

  • Du G, Zhuang X, Querol X, Izquierdo M, Alastuey A, Moreno T, Font O (2009) Ge distribution in the Wulantuga high-germanium coal deposit in the Shengli coalfield, Inner Mongolia, northeastern China. Int J Coal Geol 78:16–26. doi:10.1016/j.coal.2008.10.004

    Article  Google Scholar 

  • Dutrizac JE, Jambor JL, Chen TT (1986) Host minerals for the gallium-germanium ores of the Apex Mine, Utah. Econ Geol 81:946–950. doi:10.2113/gsecongeo.81.4.946

    Article  Google Scholar 

  • Dutrizac J, Chen T, Longton R (1996) The mineralogical deportment of germanium in the Clarksville Electrolytic Zinc Plant of Savage Zinc Inc. Metall Mater Trans B 27:567–576. doi:10.1007/bf02915654

    Article  Google Scholar 

  • Elsner H, Melcher F, Schwarz-Schampera U, Buchholz P (2010) Elektronikmetalle – zukünftig steigender Bedarf bei unzureichender Versorgungslage? Commod Top News 33:1–13

    Google Scholar 

  • Eremin N, Sergeeva N, Dergachev A (2007) Rare minerals from massive sulfide ores: Typomorphic features and geochemical trend. Mosc Univ Geol Bull 62:98–106. doi:10.3103/s0145875207020044

    Article  Google Scholar 

  • Fleischer M (1955) Minor elements in some sulfide minerals. In: Bateman AM (ed) Economic Geology 50th Anniversary Volume. Economic Geology Publishing Company. pp 970–1024

  • Fleischer M (1961) Germanium content of enargite and other copper sulfide minerals. USGS Prof Pap 424-B:259–261

    Google Scholar 

  • Font O, Querol X, Huggins FE, Chimenos JM, Fernandez AI, Burgos S, Pena FG (2005a) Speciation of major and selected trace elements in IGCC fly ash. Fuel 11:1364–1371

    Article  Google Scholar 

  • Font O, Querol X, Lopez-Soler A, Chimenos JM, Fernandez AI, Burgos S, Pena FG (2005b) Ge extraction from gasification fly ash. Fuel 11:1384–1392

    Article  Google Scholar 

  • Fryklund VC, Fletcher JD (1956) Geochemistry of sphalerite from the Star Mine, Coeur d’Alene district, Idaho. Econ Geol 51:223–247. doi:10.2113/gsecongeo.51.3.223

    Article  Google Scholar 

  • Gluskoter HJ, Ruch RR, Miller WG, Cahill RA, Dreher GB, Kuhn JK (1977) Trace elements in coal: occurrence and distribution. Illinois State Geological Survey Circular 499

  • Goldschmidt VM (1908) Über Argyrodit aus Bolivia. Z Krist Mineral 45:548–554

    Google Scholar 

  • Goldschmidt VM (1926) Über das krystallochemische und geochemische Verhalten des Germaniums. Naturwissenschaften 14:295–297. doi:10.1007/bf01503585

    Article  Google Scholar 

  • Goldschmidt VM (1930) Über das Vorkommen des Germaniums in Steinkohlen und Steinkohlen-Produkten. Nachr Ges Wiss Gött, Math-Phys Kl:398–401

  • Goldschmidt VM (1935) Rare Elements in Coal Ashes. Ind Eng Chem 27:1100–1102. doi:10.1021/ie50309a032

    Article  Google Scholar 

  • Graton LC, Harcourt GA (1935) Spectrographic evidence on origin of ores of Mississippi Valley type. Econ Geol 30:800–824. doi:10.2113/gsecongeo.30.7.800

    Article  Google Scholar 

  • Guberman DE (2010) Germanium. U.S. Geological Survey Mineral commodity summaries 2010. Washington DC

  • Guberman DE (2011a) Germanium. U.S. Geological Survey Mineral commodity summaries 2011. Washington DC

  • Guberman DE (2011b) Germanium. In: U.S. Geological Survey Minerals yearbook 2011, v. I. Washington DC

  • Guberman DE (2012) Germanium. U.S. Geological Survey Mineral commodity summaries 2012. Washington DC

  • Guberman DE (2013) Germanium. U.S. Geological Survey Mineral commodity summaries 2013. Washington DC

  • Hallam A, Payne KW (1958) Germanium Enrichment in Lignites from the Lower Lias of Dorset. Nature 181:1008–1009

    Article  Google Scholar 

  • Harbuck DD (1992) Gallium and Germanium Recovery from domestic sources. U. S. Bureau of Mines Report of Investigation 9419

  • Höll R, Kling M, Schroll E (2007) Metallogenesis of germanium—A review. Ore Geol Rev 30:145–180. doi:10.1016/j.oregeorev.2005.07.034

    Article  Google Scholar 

  • Hörmann PK (1963) Zur Geochemie des Germaniums. Geochim Cosmochim Acta 8:861–876

    Article  Google Scholar 

  • Howes EA, Lees B (1955) The occurrence and recovery of germanium in large water-tube boilers. J Inst Fuel 28:298–299

    Google Scholar 

  • Hu R, Bi X, Ye Z, Su W (1996) The genesis of Lincang germanium deposit — A preliminary investigation. Chin J Geochem 15:44–50. doi:10.1007/bf03166795

    Article  Google Scholar 

  • Hu RZ, Qi HW, Zhou MF, Su WC, Bi XW, Peng JT, Zhong H (2009) Geological and geochemical constraints on the origin of the giant Lincang coal seam-hosted germanium deposit, Yunnan, SW China: A review. Ore Geol Rev 36:221–234

    Google Scholar 

  • Intiomale MM, Oosterbosch R (1974) Geologie et geochimie du gisement de Kipushi, Zaire. In: Bartholomé P (ed) Gisements stratiformes et provinces cupriferes. Societe Geologique de Belgique, Liege, pp 123–164

    Google Scholar 

  • Kelley KD, Jennings S (2004) A Special Issue Devoted to Barite and Zn-Pb-Ag Deposits in the Red Dog District, Western Brooks Range, Northern Alaska. Econ Geol 99:1267–1280. doi:10.2113/gsecongeo.99.7.1267

    Article  Google Scholar 

  • Kelley KD, Leach DL, Johnson CA, Clark JL, Fayek M, Slack JF, Anderson VM, Ayuso RA, Ridley WI (2004) Textural, Compositional, and Sulfur Isotope Variations of Sulfide Minerals in the Red Dog Zn-Pb-Ag Deposits, Brooks Range, Alaska: Implications for Ore Formation. Econ Geol 99:1509–1532. doi:10.2113/gsecongeo.99.7.1509

    Article  Google Scholar 

  • Ketris MP, Yudovich YE (2009) Estimations of Clarkes for carbonaceous biolithes: World averages for trace element contents in black shales and coals. Int J Coal Geol 78:135–148

    Article  Google Scholar 

  • Kler VR (1988) Concentrations of minor elements in coals and coal-bearing formations (in Russian). In: Kler VR, Nenakhova BF, Saprykin FY et al (eds) Metallogeny and geochemistry of coal and shale bearing strata of the USSR. Concentration patterns of elements and methods of their study, Nauka, Moscow, pp 67–142

    Google Scholar 

  • Kulinenko OR (1977) Relationship between germanium content and seam thickness in Paleozoic paralic coal basins of Ukraine. Int Geol Rev 19:1178–1182. doi:10.1080/00206817709471121

    Article  Google Scholar 

  • Li B, Gu X, Han R, Wen, S (2011a) Trace element geochemistry of sphalerite in Huize lead-zinc deposit, northeastern Yunnan, China. Proceedings of the 2011 International Conference on Multimedia Technology pp 4257–4260 doi:10.1109/icmt.2011.6002858

  • Li J, Zhuang X, Querol X (2011b) Trace element affinities in two high-Ge coals from China. Fuel 90:240–247. doi:10.1016/j.fuel.2010.08.011

    Article  Google Scholar 

  • Lombaard AF, Günzel A, Innes J, Krüger TL (1986) The Tsumeb lead-zinc-copper-silver deposit, South West Africa/Namibia In: Annhaeusser CRM, S. (ed) Mineral Deposits of Southern Africa. Geological Society of South Africa, Johannesburg, pp 1761–1782

  • Mardon SM, Hower JC (2004) Impact of coal properties on coal combustion by-product quality: examples from a Kentucky power plant. Int J Coal Geol 59:153–169

    Article  Google Scholar 

  • Mastalerz M, Hower JC, Drobniak A, Mardon SM, Lis G (2004) From in-situ coal to fly-ash: a study of coal mines and power plants from Indiana. Int J Coal Geol 59:171–192

    Article  Google Scholar 

  • Meij R (1994) Trace element behaviour in coal-fired power plants. Fuel Process Technol 39:199–217

    Article  Google Scholar 

  • Melcher F (2003) The Otavi mountain land in Namibia: Tsumeb, germanium and snowball earth. Mitt Österr Mineralog Ges 148:413–435

    Google Scholar 

  • Melcher F, Buchholz P (2013) Germanium. In: Gunn G (ed.) Critical Metals Handbook. Wiley- Blackwell, Chicester, UK, (In press)

  • Mosier DL, Berger VI, Singer DA (2009) Volcanogenic massive sulfide deposits of the world – database and grade and tonnage models. USGS Open File Report 2009–1034

  • Müller D, Kaminski K, Uhlig S, Graupner T, Herzig P, Hunt S (2002) The transition from porphyry- to epithermal-style gold mineralization at Ladolam, Lihir Island, Papua New Guinea: a reconnaissance study. Miner Depos 37:61–74. doi:10.1007/s00126-001-0230-y

    Article  Google Scholar 

  • Onishi H (1956) Notes on the geochemistry of germanium. Bull Chem Soc Jpn 29:686–694

    Article  Google Scholar 

  • Paar WH, Roberts AC, Berlepsch P, Armbruster T, Topa D, Zagler G (2004) Putzite, (Cu4.7Ag3.3)Σ8GeS6, a new mineral species from Catamarca, Argentina: Description and crystal structure. Can Min 42:1757–1769. doi:10.2113/gscanmin.42.6.1757

    Article  Google Scholar 

  • Palero-Fernández FJ, Martín-Izard A (2005) Trace element contents in galena and sphalerite from ore deposits of the Alcudia Valley mineral field (Eastern Sierra Morena, Spain). J Geochem Explor 86:1–25

    Article  Google Scholar 

  • Papish J, Brewer FM, Holt DA (1927) Germanium XXV. Arc spectrographic detection and estimation of germanium. Occurrence of germanium in certain tin minerals. Enargite as a possible source of germanium. J Am Chem Soc 49:3028–3033. doi:10.1021/ja01411a008

    Article  Google Scholar 

  • Penney SR, Allen RM, Harrisson S, Lees TC, Murphy FC, Norman AR (2004) The global distribution of zinc mineralisation, an analysis based on a new zinc deposits database. Appl Earth Sci 113:171–182. doi:10.1179/037174504225005672

    Article  Google Scholar 

  • Prokin VA, Buslaev FP (1998) Massive copper–zinc sulphide deposits in the Urals. Ore Geol Rev 14:1–69. doi:10.1016/s0169-1368(98)00014-6

    Article  Google Scholar 

  • Putz H, Paar WH, Topa D, Makovicky E, Roberts AC (2006) Catamarcaite, Cu6GeWS8, a new germanium sulfide mineral from Capillitas, Catamarca, Argentina: Description, paragenesis and crystal structure. Can Min 44:1481–1497. doi:10.2113/gscanmin.44.6.1481

    Article  Google Scholar 

  • Qi H, Hu R, Su W, Qi L, Feng J (2004) Continental hydrothermal sedimentary siliceous rock and genesis of superlarge germanium (Ge) deposit hosted in coal: A study from the Lincang Ge deposit, Yunnan, China. Sci China Ser D Earth Sci 47:973–984. doi:10.1360/02yc0141

    Article  Google Scholar 

  • Qi HW, Rouxel O, Hu RZ, Bi XW, Wen HJ (2011) Germanium isotopic systematics in Ge-rich coal from the Lincang Ge deposit, Yunnan, Southwestern China. Chem Geol 286:252–265

    Google Scholar 

  • Querol X, Fernández-Turiel J, López-Soler A (1995) Trace elements in coal and their behaviour during combustion in a large power station. Fuel 74:331–343. doi:10.1016/0016-2361(95)93464-o

    Article  Google Scholar 

  • Reiser FKM, Guimarães FMG, Pinto ÁMM, Matos JX, Carvalho JRS, De Oliveira DPS, Rosa DRN (2009) Germanium-rich chalcopyrite from the Barrigao remobilised vein deposit, Iberian Pyrite Belt, Portugal In: Williams PJ et al. (eds) 10th SGA Meeting, Smart Science for Exploration and Mining. Townsville, Australia, pp 746–748

  • Riordan M, Hoddeson L, Herring C (1999) The invention of the transistor. Rev Mod Phys 71:S336–S345

    Article  Google Scholar 

  • Rose AW (1967) Trace elements in sulfide minerals from the Central district, New Mexico and the Bingham district, Utah. Geochim Cosmochim Acta 31:547–585. doi:10.1016/0016-7037(67)90034-8

    Article  Google Scholar 

  • Ruch RR, Gluskoter HJ, Shimp NF (1974) Occurrence and distribution of potentially volatile trace elements in coal: A final report. Ill State Geol Surv Env Geol Note 72

  • Saini-Eidukat B, Melcher F, Lodziak J (2009) Zinc-germanium ores of the Tres Marias mine, Chihuahua, Mexico. Miner Depos 44:363–370

    Article  Google Scholar 

  • Schroll E (1954) Ein Beitrag zur geochemischen Analyse ostalpiner Blei-Zink-Erze. Mitt Österr Miner Ges Spec Issue 3:1–85

    Google Scholar 

  • Schroll E, Ibrahim NA (1959) Beitrag zur Kenntnis ostalpiner Fahlerze. Mineral Petrol 7:70–105. doi:10.1007/bf01127568

    Google Scholar 

  • Schrön W (1968) Ein Beitrag zur Geochemie des Germaniums. I. Petrogenetische Probleme. Chem Erde 27:193–251

    Google Scholar 

  • Sehnke ED (1996) Germanium. U.S. Geological Survey Mineral commodity summaries 1996. Washington DC

  • Seredin VV (2003a) Anomalous Concentrations of Trace Elements in the Spetsugli Germanium Deposit (Pavlovka Brown Coal Deposit, Southern Primorye): Communication 2. Rubidium and Cesium. Lithol Miner Resour 38:233–241. doi:10.1023/a:1023931702843

    Article  Google Scholar 

  • Seredin VV (2003b) Anomalous Trace Elements Contents in the Spetsugli Germanium Deposit (Pavlovka Brown Coal Deposit) Southern Primorye: Communication 1. Antimony. Lithol Miner Resour 38:154–161. doi:10.1023/a:1023404109510

    Article  Google Scholar 

  • Seredin VV, Finkelman RB (2008) Metalliferous coals: A review of the main genetic and geochemical types. Int J Coal Geol 76:253–289

    Article  Google Scholar 

  • Seredin VV, Danilcheva Y, Magazina L, Sharova I (2006) Ge-bearing coals of the Luzanovka Graben, Pavlovka brown coal deposit, southern Primorye. Lithol Miner Resour 41:280–301. doi:10.1134/s0024490206030072

    Article  Google Scholar 

  • Shima M (1964) The distribution of germanium and tin in meteorites. Geochim Cosmochim Acta 28:517–532

    Article  Google Scholar 

  • Shpirt MY, Kler VR, Pertsikov IZ (1990) The inorganic components of solid fuels (in Russian). Khimiya, Moscow, 240 pp

    Google Scholar 

  • Smith R, Campbell JA, Felix WD (1980) Atmospheric trace element pollutants from coal combustion. Min Eng 32:1603–1613

    Google Scholar 

  • Soares Monteiro LV, Bettencourt JS, Juliani C, de Oliveira TF (2006) Geology, petrography, and mineral chemistry of the Vazante non-sulfide and Ambrósia and Fagundes sulfide-rich carbonate-hosted Zn–(Pb) deposits, Minas Gerais, Brazil. Ore Geol Rev 28:201–234. doi:10.1016/j.oregeorev.2005.03.005

    Article  Google Scholar 

  • Spears DA, Zheng Y (1999) Geochemistry and origin of elements in some UK coals. Int J Coal Geol 38:161–179. doi:10.1016/s0166-5162(98)00012-3

    Article  Google Scholar 

  • Stadnichenko T, Murata KJ, Axelrod JM (1950) Germaniferous Lignite from the District of Columbia and Vicinity. Sci 112:109. doi:10.1126/science.112.2900.109

    Article  Google Scholar 

  • Stadnichenko T, Murata KJ, Zubovic P, Hufschmidt EL (1953) Concentration of germanium in the ash of American coals - A progress report. USGS Circular 272

  • Stoiber RE (1940) Minor elements in sphalerite. Econ Geol 35:501–519. doi:10.2113/gsecongeo.35.4.501

    Article  Google Scholar 

  • Taylor SR (1964) Abundance of chemical elements in the continental crust: a new table. Geochim Cosmochim Acta 28:1273–1285. doi:10.1016/0016-7037(64)90129-2

    Article  Google Scholar 

  • Taylor, R.D., Leach, D.L., Bradley, D.C., and Pisarevsky, S.A., 2009, Compilation of mineral resource data for Mississippi Valley-Type and clastic-dominated sediment-hosted Pb-Zn deposits. USGS Open-File Report 2009–1297

  • Thiele UK (2001) The Current Status of Catalysis and Catalyst Development for the Industrial Process of Poly(ethylene terephthalate) Polycondensation. Int J Polym Mater 50:387–394. doi:10.1080/00914030108035115

    Article  Google Scholar 

  • Tolcin AC (2013) Zinc. U.S. Geological Survey Mineral commodity summaries 2013. Washington DC

  • Torma AE, Jiang H (1991) Extraction Processes for Gallium and Germanium. Miner Process Extr Metall Rev 7:235–258. doi:10.1080/08827509108952673

    Article  Google Scholar 

  • Tourigny G, Doucet D, Bourget A (1993) Geology of the Bousquet 2 Mine; an example of a deformed, gold-bearing, polymetallic sulfide deposit. Econ Geol 88:1578–1597. doi:10.2113/gsecongeo.88.6.1578

    Article  Google Scholar 

  • Urbain MG (1909) Analyse spectrographique des blendes. C R Hebd Séances Acad Sci 149:603–603

    Google Scholar 

  • Wai CM, Wetherill GW, Wasson JT (1968) The distribution of trace quantities of germanium between metal, silicate and sulfide phases. Geochim Cosmochim Acta 32:1269–1278. doi:10.1016/0016-7037(68)90028-8

    Article  Google Scholar 

  • Watling RJ (1976) Trace element distribution in primary sulphide minerals from the Keel Prospect, County Longford. P Roy Irish Acad B 76:241–261

    Google Scholar 

  • Wedepohl HK (1995) The composition of the continental crust. Geochim Cosmochim Acta 59:1217–1232. doi:10.1016/0016-7037(95)00038-2

    Article  Google Scholar 

  • Wellmer FW, Hannak W, Krauss U, Thormann A (1990) Deposits of rare metals. In: Kürsten M (ed) Raw Materials for New Technologies. Proceedings of the fifth international symposium, held in Hannover, Fed. Rep. of Germany, at the Federal Institute for Geosciences and Natural Resources October 19–21, 1988. Schweizerbarth, Stuttgart, pp 71–122

    Google Scholar 

  • Winkler C (1886) Germanium, Ge, ein neues, nichtmetallisches Element. Ber Dtsch Chem Ges 19:210–211. doi:10.1002/cber.18860190156

    Article  Google Scholar 

  • Yevdokimov AI, Yekhanin AG, Kuzmin VI, Ozyorskiy AYu (2002) New data on the germanium content of Mesozoic lignites in the basin of the river Kas (in Russian). In: The geology of coal deposits, 12th Edn. Uralsk Gos. Gorno-Geol. Akad., Yekaterinburg, pp 181–187

  • Yudovich YE (2003a) Coal inclusions in sedimentary rocks: a geochemical phenomenon. A review. Int J Coal Geol 56:203–222

    Article  Google Scholar 

  • Yudovich YE (2003b) Notes on the marginal enrichment of Germanium in coal beds. I J Coal Geol 56:223–232. doi:10.1016/j.coal.2003.08.003

    Article  Google Scholar 

  • Yudovich YE, Ketris MP (2003) Germanium in coals (in Russian). Komi Scientific Centre UrO Russian Academy of Sciences, Syktyvkar, 204 pp

    Google Scholar 

  • Yudovich YE, Ketris MP, Merts AV (1985) Trace elements in fossil coals (in Russian). Nauka, Leningrad, 239 pp

    Google Scholar 

  • Yun S-T, So C-S, Choi S-H, Shelton KL, Koo J-H (1993) Genetic environment of germanium-bearing gold-silver vein ores from the Wolyu mine, Republic of Korea. Miner Depos 28:107–121. doi:10.1007/bf00196335

    Article  Google Scholar 

  • Yung-Chin H (1969) Genetic significance of germanium distribution in coals of a certain district. Int Geol Rev 11:243–255. doi:10.1080/00206816909475047

    Article  Google Scholar 

  • Zharov YN, Meytov EC, Sharova IG (1996) Valuable and toxic elements in the coal products of Russia: A handbook (in Russian). Nedra, Moscow, 238 pp

    Google Scholar 

  • Zhuang X, Querol X, Alastuey A, Juan R, Plana F, Lopez-Soler A, Du G, Martynov VV (2006) Geochemistry and mineralogy of the Cretaceous Wulantuga high-germanium coal deposit in Shengli coal field, Inner Mongolia, Northeastern China. Int J Coal Geol 66:119–136. doi:10.1016/j.coal.2005.06.005

    Article  Google Scholar 

  • Zubovic P, Stadnichenko T, Sheffey NB (1961) Geochemistry of minor elements in coals of the Northern Great Plains coal province. USGS Bulletin 1117-A

Download references

Acknowledgments

The authors would like to thank Dr. Raimon Tolosana-Delgado for valuable discussions which helped to significantly improve the manuscript. We are also indebted to Prof. Dr. F.-W. Wellmer, Dr. V. Melfos, and Prof. Dr. V. V. Seredin for their valuable reviews of the manuscript, and Prof. Dr. Ya. E. Yudovich.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Max Frenzel.

Additional information

Editorial handling B. Lehmann

Electronic supplementary material

Below is the link to the electronic supplementary material.

Online Resource 1

A guide to the sphalerite database (.pdf) (PDF 169 kb)

Online Resource 2

The sphalerite database (.xls) (XLS 464 kb)

Online Resource 3

Sample simulation spread sheet (.xlsx) (XLSX 9957 kb)

Online Resource 4

Germanium enrichment during the processing of thermal coals (.pdf) (PDF 204 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Frenzel, M., Ketris, M.P. & Gutzmer, J. On the geological availability of germanium. Miner Deposita 49, 471–486 (2014). https://doi.org/10.1007/s00126-013-0506-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00126-013-0506-z

Keywords

Navigation