Skip to main content
Log in

An Assessment of Mercury Loading in Core Sediments of Sunderban Mangrove Wetland, India (A Preliminary Report)

  • Published:
Bulletin of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

This is a preliminary report on total mercury (THg) in core sediments (<63 μm particle size) of Sunderban mangrove wetland, northeastern part of the Bay of Bengal, India. Cold vapor atomic absorption spectrometry (CVAAS) was used for THg determination. The concentration varies from 9.8 to 535.1 ppb (ngg−1). Results revealed variations over premonsoon and postmonsoon month at different core depth, as well as in studied three sampling stations, located at the site of three rivers: Hugli River (S1), Matla River (S2) and Bidyadhari River (S3). Elevated concentration of THg in subsurface layer (4–8 cm) of the core at S2 is attributed to remobilization of mercury from deeper sediment (32–36 cm). Positive correlation is present between total Hg and clay content. Based on index of geoaccumulation (Igeo) and Effects-Range Low (ER-L) value (150 ppb) it is considered that the sediments are till now unpolluted. As a consequence, there is less chance of ecotoxicological risk to organisms living in studied sediments. Two statistical methods were applied to determine THg anomalies. Box plot method showed one extreme and three outliers in S1 at postmonsoon season. Two extremes were found at S2 at 4–8 and at 32–36 cm in premonsoon period. In S3 there was no anomaly by box plot method. MAD method was more sensitive than box plot method and THg anomaly was detected at 12–16 cm in S3 during postmonsoon season. The data reported are useful baselines for THg in Sunderban mangrove wetland, India and would be of help in future sediment quality studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • AMAP (2005) AMAP Assessment 2002. Heavy metals in the Arctic. Arctic Monitoring and Assessment Programme. (AMAP) Oslo, Norway, xvi + 265 pp

  • Andren AW, Harriss RC (1973) Methylmercury in estuarine sediments. Nature 245:256–257

    Article  CAS  Google Scholar 

  • Baldi F, Bargagli F (1984) Mercury pollution in marine sediments near a chlor-alkali plant: distribution and availability of the metal. Sci Total Environ 39:15–26. doi:10.1016/0048-9697(84)90021-4

    Article  CAS  Google Scholar 

  • Baldi F, Bargagli R, Renzoni A (1979) The distribution of mercury in the surficial sediments of the northern Tyrrhenian Sea. Mar Pollut Bull 10:301–303. doi:10.1016/0025-326X(79)90201-7

    Article  CAS  Google Scholar 

  • Beldowski J, Pempkowiak J (2007) Mercury transformations in marine coastal sediments as derived from mercury concentration and speciation changes along source/sink transport pathway (southern Baltic). Estuar, Coast Shelf Sci 72:370–378. doi:10.1016/j.ecss.2006.10.007

    Article  Google Scholar 

  • Bhattacharya A (2002) The role of macrofauna in the bioturbation processes around the mangrove zones of the Sunderban Biosphere Reserve and its impact on environment management. In: Sharama JK, Esa PS, Mohan C, Sashidharan N (eds) Biosphere Reserves in India and their management. Ministry of Environment and Forests, G.O.I, New Delhi, India, pp 166–180

    Google Scholar 

  • Birkett JW, Noreng JMK, Lester JN (2002) Spatial distribution of mercury in sediments and riparian environment of River Yare, Norfolk, UK. Environ Pollut 116:65–74. doi:10.1016/S0269-7491(01)00121-X

    Article  CAS  Google Scholar 

  • Boening DW (2000) Ecological effects, transport and fate of mercury: a general review. Chemosphere 40:1335–1351. doi:10.1016/S0045-6535(99)00283-0

    Article  CAS  Google Scholar 

  • Bothner M, Jahnuke R, Peterson M, Carpenter R (1980) Rate of mercury loss from contaminated estuarine sediments. Geochim et Cosmochim Acta 44:273–285. doi:10.1016/0016-7037(80)90137-4

    Article  CAS  Google Scholar 

  • Canario J, Vale C, Caetano M, Madureira MJ (2003) Mercury in contaminated sediments and pore waters enriched in sulphate (Tagus Estuary, Portugal). Environ Pollut 126:425–433. doi:10.1016/S0269-7491(03)00234-3

    Article  CAS  Google Scholar 

  • Canario J, Vale C, Caetano M (2005) Distribution of monomethylmercury and mercury in surface sediments of the Tagus Estuary (Portugal). Mar Pollut Bull 50:1121–1145. doi:10.1016/j.marpolbul.2005.06.052

    Article  CAS  Google Scholar 

  • Canario J, Poissant L, O’Driscoll N, Ridal J, Delongchamp T, Pilote M, Constant P, Blais J, Lean D (2008) Mercury partitioning in surface sediments of the Upper St. Lawrence river (Canada): evidence of the importance of the sulphur chemistry. Water, Air Soil Pollut 187:219–231. doi:10.1007/s11270-007-9510-1

    Article  CAS  Google Scholar 

  • Canuel EA, Martens CS (1993) Seasonal variability in the sources and alteration of organic matter associated with recently deposited sediments. Org Geochem 20(5):563–577

    Article  CAS  Google Scholar 

  • Carreón-Martínez LB, Huerta-Diaz MA, Nava-Lopez C, Siqueiros-Valencia A (2002) Levels of reactive mercury and silver in sediments from the Port of Ensenada. Baja California, Mexico. Bull Environ Contam Toxicol 68:138–147. doi:10.1007/s00128-001-0230-810.1007/s00128-001-0230-8

    Article  Google Scholar 

  • Chatterjee M, Silva Filho EV, Sarkar SK, Sella SM, Bhattacharya A, Satpathy KK, Prasad MVR, Chakraborty S, Bhattacharya BD (2007) Distribution and possible source of trace elements in the sediment cores of a tropical macrotidal estuary and their ecotoxicological significance. Environ Int 33:346–356. doi:10.1016/j.envint.2006.11.013

    Article  CAS  Google Scholar 

  • Elliot M, Griffiths AH (1986) Mercury contamination in components of an estuarine ecosystem. Water Sci Technol 18:161–170

    Google Scholar 

  • Fitzgerald WF, Gill GA (1979) Subnanogram determination of mercury by two-stage gold amalgamation and gas phase detection applied to atmospheric analysis. Anal Chem 51:1714–1720. doi:10.1021/ac50047a030

    Article  CAS  Google Scholar 

  • Folk RL, Ward WC (1957) Brazos River bar, a study of the significance of grain size parameters. J Sediment Petrol 27:3–26

    Google Scholar 

  • Frančišković-Bilinski S (2007) An assessment of multielemental composition in stream sediments of Kupa River drainage basin, Croatia for evaluating sediment quality guidelines. Fresenius Environ Bull 16:561–575

    Google Scholar 

  • Frančišković-Bilinski S (2008) Detection of geochemical anomalies in stream sediments of the upper Sava River drainage basin (Croatia, Slovenia). Fresenius Environ Bull 17, accepted in August

  • Frančišković-Bilinski S, Bilinski H, Tibljaš D, Hanžel D (2003) Characterization of sediments from Dragonja, river at the border of Croatia and Slovenia (in Croatian). 3rd Croatian conference on waters. Osijek, 28–31th May 2003, paper 6.02

  • Frančišković-Bilinski S, Bilinski H, Tibljaš D, Rantitsch G (2005) Effects of mercury mining regions from NW Dinarides on quality of stream sediments. Fresenius Environ Bull 14:913–927

    Google Scholar 

  • Frančišković-Bilinski S, Bilinski H, Tibljaš D, Hanžel D (2006) Sediments from Savinja, Voglajna and Hudinja Rivers (Slovenia), reflecting anomalies in an old metallurgic area. Fresenius Environ Bull 15:220–228

    Google Scholar 

  • Guzzella L, Roscioli C, Vigano L, Saha M, Sarkar SK, Bhattacharya A (2005) Evaluation of the concentration of HCH, DDT, HCB, PCB and PAH in sediments along the lower stretch of Hugli estuary, West Bengal, north east India. Environ Int 31:523–534

    Article  CAS  Google Scholar 

  • Hines ME, Horvat M, Faganeli J, Bonzongo J-C, Barkay T, Major EB (2000) Mercury biogeochemistry in the Idrija River, Slovenia, from above the mine into the Gulf of Trieste. Environ Res 83:129–139. doi:10.1006/enrs.2000.4052

    Article  CAS  Google Scholar 

  • Hinton J, Veiga M (2001) Mercury contaminated sites: a review of remedial solutions. In: Proceedings of the NIMD (National Institute for Minamata Disease) Forum Minamata, Japan

  • Krumbein WC, Pettijohn FJ (1938) Manual of sedimentary petrology. Plenum, New York, p 549

  • Kwokal Ž, Frančišković-Bilinski S, Bilinski H, Branica M (2002) A comparison of anthropogenic mercury pollution in Kaštela Bay (Croatia) with pristine estuaries in Öre (Sweden) and Krka (Croatia). Mar Pollut Bull 44:1152–1169. doi:10.1016/S0025-326X(02)00134-0

    Article  CAS  Google Scholar 

  • Liao JF (1990) The chemical properties of the mangrove Solonchak in the northeast part of Hainan Island. The Acta Scientiarum Naturalium Universities Sunyatseni 9(Suppl):67–72

    Google Scholar 

  • Lindqvist O, Johansson K, Aastrup M, Andersson A, Bringmark L, Hovsenius G, Hakanson L, Iverfeldt A, Meili M, Timm B (1991) Mercury in the Swedish environment- Recent research on causes, consequences, and corrective methods: special volume. Water Air Soil Poll 55

  • Long ER, Morgan LG (1991) Biopoential for biological effects of sediment-sorbed contaminants tested in the national status and trends programme. Office of Coastal and Estuarine Assessment, Seattle, WA

    Google Scholar 

  • Loring DH (1978) Geochemistry of zinc, copper, and lead in the sediments of the estuary and Gulf of St Lawrence. Can J Earth Sci 15:757–772

    CAS  Google Scholar 

  • Marins RV, Lacerda LD, Gonçalves GO, Paiva EC (1997). Effect of root metabolism on the post-depositional mobilization of mercury in salt marshsoils. Bull Environ Contamin Toxicol 58:733–738

    Article  CAS  Google Scholar 

  • Mason RP, Lawson NM, Lawrence AL, Leaner JJ, Lee JG, Shen G (1999) Mercury in Chesapeake Bay. Mar Chem 65:77–96. doi:10.1016/S0304-4203(99)00012-2

    Article  CAS  Google Scholar 

  • Moreno FN, Anderson CWN, Stewart RB, Robinson BH (2005) Mercury volatilization and phytoextraction from base-metal mine tailings. Environ Pollut 136:341–352. doi:10.1016/j.envpol.2004.11.020

    Article  CAS  Google Scholar 

  • Muller G (1979) Schwermetalle in den sedimenten des Rheins-Veranderungen seit 1971. Umschau 79(24):778–783

    Google Scholar 

  • Pacyna JM, Pacyna EG (2001) An assessment of global and regional emissions of trace metals to the atmosphere from anthropogenic sources worldwide. Environ Rev 9:269–298. doi:10.1139/er-9-4-269

    Article  CAS  Google Scholar 

  • Pacyna EG, Pacyna JM, Pirrone M (2001) European emissions of atmospheric mercury from anthropogenic sources in 1995. Atmos Environ 35:2987–2996. doi:10.1016/S1352-2310(01)00102-9

    Article  CAS  Google Scholar 

  • Panda UC, Rath P, Sahu KC, Majumdar S, Sundaray SK (2006) Study of geochemical association of some trace metals in the sediments of Chilika Lake: a multivariate statistical approach. Environ Monit Assess 123:125–150. doi:10.1007/s10661-006-9187-8

    Article  CAS  Google Scholar 

  • Pereira ME, Duarte AC, Millward G, Abreu SN, Vale C (1998) An estimation of industrial mercury stored in sediments of a confined area of the Lagoon of Aveiro (Portugal). Water Sci Technol 37:125–130

    Article  CAS  Google Scholar 

  • Pilgrim W, Schroeder W, Pocella DB, Santos-Burgoa C, Montgomery S, Hamilton A, Trip L (2000) Developing consensus: mercury sciemce and policy in the NAFTA countries (Canada, the United States and Mexico). Sci Tot Environ 261:185–193. doi:10.1016/S0048-9697(00)00635-5

    Article  CAS  Google Scholar 

  • Rasmussen PE (1994) Current methods of estimating atmospheric mercury fluxes in remote areas. Environ Sci Technol 28:2233–2241

    Article  CAS  Google Scholar 

  • Reimann C, Filzmoser P, Garrett RG (2005) Background and threshold: critical comparison of methods of determination. Sci Tot Environ 346:1–16. doi:10.1016/j.scitotenv.2004.11.023

    Article  CAS  Google Scholar 

  • Renzoni A, Bacci E, Falciai L (1973) Mercury concentration in the water, sediments and fauna on an area of Tyrrhenian coast. Rev Int Ocean Med 31–32:17–45

    Google Scholar 

  • Saha M, Sarkar SK, Bhattacharya B (2006) Interspecific variation in heavy metal body concentrations in biota of Sunderban mangrove wetland, northeast India. Environ Int 32:203–207

    Article  CAS  Google Scholar 

  • Sahu KC, Panda UC, Mahapatra DM (1998) Geochemistry and mineralogy of sediments in Rushikulya Estuary, East coast of India Chem Environ Res 7:77–92

    CAS  Google Scholar 

  • Sarkar SK, Bhattacharya B, Bandyopadhaya G, Giri S, Debnath S (1999) Tropical coastal organism as qualitative indicators of mercury and organomercury for sustainable use of living resources. Environ Develop Sustainabil 1:135–147

    Article  Google Scholar 

  • Sarkar SK, Franciscovic-Bilinski S, Bhattacharya A, Saha M, Bilinski H (2004) Levels of elements in the surficial estuarine sediments of the Hugli river, northeast India and their environmental implications. Environ Int 30:1089–1098. doi:10.1016/j.envint.2003.10.009

    Article  Google Scholar 

  • Schroeder WH, Anlauf KG, Barrie LA, Lu JY, Steffen A, Schneeberger DR, Berg T (1998) Arctic springtime depletion of mercury. Nature 394:331–332. doi:10.1038/28530

    Article  CAS  Google Scholar 

  • Selli R, Frignani M, Rossi CM, Viviani R (1973) Mercury content in the sediments of the Adriatic and Tyrrhenian Seas. Bull Geol Soc Greece 10:177–179

    CAS  Google Scholar 

  • Shaw BP, Sahu A, Chaudhuri SB, Panigrahi AK (1988) Mercury in the Rushikulya River Estuary. Mar Pollut Bull 19:233–234. doi:10.1016/0025-326X(88)90238-X

    Article  CAS  Google Scholar 

  • Silva LFF, Machado W, Lisboafilho SD, Lacerda LD (2003) Mercury accumulation in sediments of a mangrove ecosystem in SE Brazil. Water, Air Soil Pollut 145:67–77. doi:10.1023/A:1023610623280

    Article  CAS  Google Scholar 

  • Spencer KL (2002) Spatial variability of metals in the inter-tidal sediments of the Medway Estuary, Kent, UK. Mar Pollut Bull 44:933–944. doi:10.1016/S0025-326X(02)00129-7

    Article  CAS  Google Scholar 

  • Subramanian V, Madhavan N, Saxena R, Lundin L-C (2003) Nature of distribution of mercury in the sediments of River Yamuna (tributary of the Ganges), India. J Environ Monit 5:427–434. doi:10.1039/b211263a

    Article  CAS  Google Scholar 

  • Trivedi RC, Dubey PS (1978) Evaluation of toxicity of some industrial wastes to fish by bioassay. Environ Pollut 17:75–80. doi:10.1016/0013-9327(78)90056-3

    Article  CAS  Google Scholar 

  • Tukey JW (1977) Exploratory data analysis. Reading: Addison-Wesley Valette-Silver HJ (1993) The use of sediment cores to reconstruct historical trends in contamination of estuarine and coastal sediments. Estuaries 16:577–588

    Google Scholar 

  • Turkian KK, Wedephol KH (1961) Distribution of the elements in some major units of the earth crust. Bull Geol Soc Am 72:75–92

    Google Scholar 

  • Valette-Silver HJ (1993) The use of sediment cores to reconstruct historical trends in contamination of estuarine and coastal sediments. Estuaries 16(3B):577–588

    Article  CAS  Google Scholar 

  • Walkey A, Black TA (1934) An examination of the Dugtijaraff method for determining soil organic matter and proposed modification of the chronic and titration method. Soil Sci 37:23–38

    Google Scholar 

  • Wang W, Driscoll CT (1995) Patterns of total mercury concentrations in Onondaga Lake, New York. Environ Sci Technol 29:2261–266. doi:10.1021/es00009a016

    Article  CAS  Google Scholar 

  • Wang QC, Shen WG, Ma ZW (2000) Estimation of mercury emission from coal combustion in China. Environ Sci Technol 34:2711–2713

    Article  CAS  Google Scholar 

  • Zingde MD, Desai BN (1981) Mercury in Thane Creek, Bombay harbour. Mar Pollut Bull 12:237–241. doi:10.1016/0025-326X(81)90363-5

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The research work was supported jointly by Council of Scientific and Industrial Research (CSIR), New Delhi, India (Sanction No. 24/(0276)/EMR-II) and Indo-Croatian Programme of Cooperation in Science and Technology (Sanction No. INT/CROATIA/P-7/05) and project of Croatian Ministry of Science Education and Sport No. 098-0982934-2720. One of the authors (Mousumi Chatterjee) is greatly indebted to CSIR for awarding her SRF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. K. Sarkar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kwokal, Ž., Sarkar, S.K., Chatterjee, M. et al. An Assessment of Mercury Loading in Core Sediments of Sunderban Mangrove Wetland, India (A Preliminary Report). Bull Environ Contam Toxicol 81, 105–112 (2008). https://doi.org/10.1007/s00128-008-9443-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00128-008-9443-4

Keywords

Navigation