Skip to main content

Advertisement

Log in

Application of a Redox Gradostat Reactor for Assessing Rhizosphere Microorganism Activity on Lambda-Cyhalothrin

  • Published:
Bulletin of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

Bacterial activity on pesticides can lead to decreased toxicity or persistence in aquatic systems. Rhizosphere activity is difficult to measure in situ. To mimic rhizosphere properties of the soft rush, Juncus effusus, a single-stage gradostat reactor was developed to study cycling of lambda-cyhalothrin by rhizobacteria and the effects of Fe(III) and citrate, both common in wetland soil, on lambda-cyhalothrin degradation. Redox gradient changes, greater than ±10 mV, were apparent within days 5–15 both in the presence and absence of ferric citrate. Through the production of a redox gradient (p < 0.05) by rhizobacteria and the ability to measure pesticide loss over time (p < 0.05), reactors were useful in expanding knowledge on this active environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Anderson TA, Kruger EL, Coats JR (1994) Enhanced degradation of a mixture of three herbicides in the rhizosphere of a herbicide-tolerant plant. Chemosphere 28:1551–1557

    Article  CAS  Google Scholar 

  • Bennett ER, Moore MT, Cooper CM, Smith S Jr (2000) Method for the simultaneous extraction and analysis of two current use pesticides, atrazine and lambda-cyhalothrin, in sediment and aquatic plants. Bull Environ Contam Toxicol 64:825–833

    Article  CAS  Google Scholar 

  • Bennett ER, Moore MT, Cooper CM, Smith S Jr, Shields FD Jr, Drouillard KG, Schulz R (2005) Vegetated agricultural drainage ditches for the mitigation of pyrethroid associated runoff. Environ Toxicol Chem 24:2121–2127

    Article  CAS  Google Scholar 

  • Budd R, Bondarenko S, Haver D, Kabashima J, Gan J (2007) Occurrence and bioavailability of pyrethroids in a mixed land use watershed. J Environ Qual 36:1006–1012

    Article  CAS  Google Scholar 

  • Chang BV, Liu JY, Yuan SY (1998) Effects of alternative electron donors, acceptors, and inhibitors on 2,4-dichlorophenoxyacetic acid and 2,4,5-trichlorophenoxyacetic acid dechlorination in soil. J Environ Sci Health B33:161–177

    Article  CAS  Google Scholar 

  • Cozarelli IM, Herman JS, Baedecker MJ (1995) Fate of microbial metabolites of hydrocarbons in a contaminated aquifer: the role of electron acceptors. Environ Sci Technol 29:458–469

    Article  Google Scholar 

  • Fritzsche C, Niemann EG (1990) Investigations into the growth of a nitrogen fixing bacterium in gradients relevant to the rhizosphere of rice. Symbiosis 9:289–293

    Google Scholar 

  • Gilbert ES, Walker AW, Keasling JD (2003) A constructed microbial consortium for biodegradation of the organophosphorus insecticide parathion. Appl Microbiol Biotechnol 61:77–81

    Article  CAS  Google Scholar 

  • Hazen TC (2010) Cometabolic bioremediation. In: Timmis KN (ed) Handbook of hydrocarbon and lipid microbiology. Springer, Berlin, pp 2506–2514

    Google Scholar 

  • He LM, Troiano J, Wang A, Goh K (2008) Environmental chemistry, ecotoxicity, and fate of lambda-cyhalothrin. Rev Environ Contam Toxicol 195:71–92

    CAS  Google Scholar 

  • Imfeld G, Vuilleumier S (2012) Measuring the effects of pesticides on bacterial communities in soil: a critical review. Eur J Soil Biol 49:22–30

    Article  CAS  Google Scholar 

  • Kamilova F, Kravchenko LV, Shaposhnikov AI, Azarova T, Makarova N, Lugtenberg B (2006) Organic acids, sugars, and L-tryptophane in exudates of vegetables growing on stonewool and their effects on activities of rhizosphere bacteria. Mol Plant Microbe Interact 19:250–256

    Article  CAS  Google Scholar 

  • Lovely DR, Anderson RT (2000) Influence of dissimilatory metal reduction on fate of organic and metal contaminants in the subsurface. Hydrogeol J 8:77–88

    Article  Google Scholar 

  • Luu YS, Ramsay JA (2003) Review: microbial mechanisms of accessing insoluble Fe(III) as an energy source. World J Microbiol Biotechnol 19:215–225

    Article  CAS  Google Scholar 

  • Meyer BN, Lam C, Moore S, Jones RL (2013) Laboratory degradation rates of 11 pyrethroids under aerobic and anaerobic conditions. J Agric Food Chem 61:4702–4708

    Article  CAS  Google Scholar 

  • Moore MT, Bennett ER, Cooper CM, Smith S Jr, Shields FD Jr, Farris JL, Milam CD (2001) Transport and fate of atrazine and lambda-cyhalothrin in an agricultural drainage ditch in the Mississippi Delta, USA. Agric Ecosyst Environ 87:309–314

    Article  CAS  Google Scholar 

  • Morgan JAW, Bending GD, White PJ (2005) Biological costs and benefits to plant–microbe interactions in the rhizosphere. J Exp Bot 56:1739

    Article  Google Scholar 

  • Nealson KH, Saffarini D (1994) Iron and manganese in anaerobic respiration: environmental significance, physiology, and regulation. Annu Rev Microbiol 48:311–334

    Article  CAS  Google Scholar 

  • Singh BK, Kuhad RC, Singh A, Lal R, Tripathi KK (1999) Biochemical and molecular basis of pesticide degradation by microorganisms. Crit Rev Biotechnol 19:197–225

    Article  CAS  Google Scholar 

  • Sukul P, Spiteller M (2001) Influence of biotic and abiotic factors on dissipating metalaxyl in soil. Chemosphere 45:941–947

    Article  CAS  Google Scholar 

  • Ueckert J, Huckfeldt K, Fendrik I (1995) Bioreactor systems for research on rhizosphere bacteria. NATO ASI Ser G37:393–397

    Google Scholar 

  • Werner I, Deanovic LA, Miller J, Denton DL, Crane D, Moore MT, Wrysinski J (2010) Effectiveness of vegetated agricultural drainage ditches in removing pesticide toxicity. Environ Toxicol Chem 29:2859–2868

    Article  CAS  Google Scholar 

  • Wimpenny JWT, Earnshaw RG, Gest H, Hayes JM, Favinger JL (1992) A novel directly coupled gradostat. J Microbiol Methods 16:157–167

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Mention of equipment, software or pesticide trade names does not constitute an endorsement for use by the USDA. All programs and services of the USDA are offered on a nondiscriminatory basis without regard to race, color, national origin, religion, sex, marital status, or handicap.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. J. Peacock.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peacock, T.J., Mikell, A.T., Moore, M.T. et al. Application of a Redox Gradostat Reactor for Assessing Rhizosphere Microorganism Activity on Lambda-Cyhalothrin. Bull Environ Contam Toxicol 92, 347–351 (2014). https://doi.org/10.1007/s00128-014-1202-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00128-014-1202-0

Keywords

Navigation