Skip to main content
Log in

Spectroscopy, Thermodynamics and Molecular Docking of Fraxinellone with DNA

  • Published:
Bulletin of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

Fraxinellone is an important botanical lactone compound and has been demonstrated to have insecticidal activity. To provide theoretical support to the assessment on the safety of utilizing fraxinellone as a natural insecticidal agent, the interactions between fraxinellone and armyworm DNA, salmon sperm DNA and calf thymus DNA were investigated using UV–Vis absorption spectroscopy, isothermal titration calorimetry, and molecular docking. Results showed that there were two types of combinations between fraxinellone and three kinds of DNA. Type I combination had an equilibrium constant of combination (Ka1) of about 105 and binding sites (n1) of 0.40–0.70, while type II combination had an equilibrium constant of combination (Ka2) of 103 and binding sites (n2) of 1.35–3.15. Results of molecular docking showed that there were non-classical embedding type interactions between fraxinellone and three kinds of DNA, with the reaction taking place in small groove areas of the DNA structure, resulting in relatively weak interactive forces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Akhmedzhanova VI, Bessonova IA, Yunusov SY (1978) The roots of Dictamnus angustifolius. Chem Nat Compd 14:404–406

    Article  Google Scholar 

  • Biavatti MW, Vieira PC, Da SM et al (2001) Limonoids from the endemic Brazilian species Raulinoa echinata. Zeitschrift Für Naturforschung C J Biosci 56:570–574

    Article  CAS  Google Scholar 

  • Biavatti MW, Westerlon R, Vieira PC et al (2005) Leaf-cutting ants toxicity of limonexic acid and degraded limonoids from Raulinoa echinata. X-ray structure of epoxy-fraxinellone. J Braz Chem Soc 16:1443–1447

    Article  Google Scholar 

  • Boustie J, Moulis C, Gleye J et al (1990) A degraded limonoid from Fagaropsis glabra. Phytochemistry 29:1699–1701

    Article  CAS  Google Scholar 

  • Braakman RBH, Karel B, Sieuwerts AM et al (2015) Integrative analysis of genomics and proteomics data on clinical breast cancer tissue specimens extracted with Acid guanidinium thiocyanate-phenol-chloroform. J Proteome Res 14:1627–1636

    Article  Google Scholar 

  • Fathizadeh A, Schiessel H, Ejtehadi MR et al (2014) Molecular dynamics simulation of supercoiled DNA rings. Macromolecules 48:164–172

    Article  Google Scholar 

  • Gindt YM, Edani BH, Olejnikova A et al (2016) The missing electrostatic interactions between DNA substrate and sulfolobus solfataricus DNA photolyase: what is the role of charged amino acids in thermophilic DNA binding proteins? J Phys Chem B 120(39):10234–10242

    Article  CAS  Google Scholar 

  • Gu HM, Xu H, Zhong ZZ et al (2011) Fraxinellone. Acta Crystallogr 67:1472

    Article  Google Scholar 

  • Guo Y, Xu H, Zhong ZZ et al (2012a) Synthesis and insecticidal activity of some novel fraxinellone-based esters. J Agric Food Chem 60:7016–7021

    Article  CAS  Google Scholar 

  • Guo Y, YanY Y, Yang C et al (2012b) Regioselective synthesis of fraxinellone-based hydrazone derivatives as insecticidal agents. Bioorg Med Chem Lett 22:5384–5387

    Article  CAS  Google Scholar 

  • Guo Y, Qu H, Zhi X et al (2013) Semisynthesis and insecticidal activity of some fraxinellone derivatives modified in the B ring. J Agric Food Chem 61:11937–11944

    Article  CAS  Google Scholar 

  • Guo Y, Wang X, Fan J et al (2017) Semisynthesis and insecticidal activity of some novel fraxinellone-based thioethers containing 1,3,4-oxadiazole moiety. R Soc Open Sci 13:1–4

    Google Scholar 

  • Haris P, Varughese M, Haridas M et al (2015) Energetics, thermodynamics, and molecular recognition of piperine with dNA. J Chem Inf Model 55:2644–2656

    Article  CAS  Google Scholar 

  • Hu CQ, Song GQ, Yin DX (1989) Limonoids from Dictamnus angustifolius. Acta Bot Sin 31(6):453–458

    CAS  Google Scholar 

  • Jeong Seon Y, Hyun SS, Young Choong K et al (2008) Neuroprotective limonoids of root bark of Dictamnus dasycarpus. J Nat Prod 71:208–211

    Article  Google Scholar 

  • Katrin S, Ursula R, Paolo C (2006) Duocarmycins binding to DNA investigated by molecular simulation. J Phys Chem B 110:3647–3660

    Google Scholar 

  • Kumar CV, Asuncion EH (1993) DNA binding studies and site selective fluorescence sensitization of an anthryl probe. J Am Chem Soc 115(19):8547–8553

    Article  CAS  Google Scholar 

  • Lee J, Kim JS, Seok C (2010) Cooperativity and specificity of Cys2His2 zinc finger protein-DNA interactions: a molecular dynamics simulation study. J Phys Chem B 114(22):7662–7671

    Article  CAS  Google Scholar 

  • Li ZX, Zhao WW, Pu XH (2011) Thermodynamic properties of resveratrol in dimethyl sulfoxide. J Therm Anal Calorim 110:1249–1252

    Article  Google Scholar 

  • Li Q, Huang X, Li S et al (2016) Semisynthesis of esters of fraxinellone C4/10-oxime and their pesticidal activities. J Agric Food Chem 64(27):5472–5478

    Article  CAS  Google Scholar 

  • Li JH, Bian L, Tian SY et al (2017) Spectroscopic study on the interaction of human cytoglobin with copper (II) ion. Spectrosc Spectral Anal 37(1):321–326

    CAS  Google Scholar 

  • Lian MP, Marc L, Winnik F O M et al (2009) New insights into chitosan-DNA interactions using isothermal titration microcalorimetry. Biomacromolecules 10:1490–1499

    Article  Google Scholar 

  • Lindsay SW, Hossainl MI, Bennett S et al (2010) Preliminary studies on the insecticidal activity and wash-fastness of twelve pyrethroid treatments impregnated into bednetting assayed against mosquitoes. Pest Manag Sci 32:397–411

    Article  Google Scholar 

  • Lomzov AA, Vorobjev YN, Pyshnyi DV (2015) Evaluation of the gibbs free energy changes and melting temperatures of DNA/DNA duplexes using hybridization enthalpy calculated by molecular dynamics simulation. J Phys Chem B 119:15221–15234

    Article  CAS  Google Scholar 

  • Long EC, Barton JK (1990) On demonstrating DNA intercalation. Acc Chem Res 23(9):271–273

    Article  CAS  Google Scholar 

  • Long LZ, Jian XY, Jien W et al (2002) Feeding deterrents from Dictamnus dasycarpus Turcz against two stored-product insects. J Agric Food Chem 50(6):1447–1450

    Article  Google Scholar 

  • Lv M, Wu WJ, Liu HX et al (2014) Effects of fraxinellone on the midgut enzyme activities of the 5th instar larvae of oriental armyworm, mythimna separata walker. Toxins 6(9):2708–2718

    Article  Google Scholar 

  • Mishra AS, Krishna EM, Maiti S (2016) Influence of ionic liquids on thermodynamics of small molecule-DNA interaction: the binding of ethidium bromide to Calf Thymus DNA. J Phys Chem B 120(10):2691–2700

    Article  CAS  Google Scholar 

  • Nakatani M, Huang RC, Okamura H et al (1998) Degraded limonoids from Melia azedarach. Phytochemistry 49(6):1773–1776

    Article  CAS  Google Scholar 

  • Silva MALD, Medeiros Z, Soares CRP et al (2014) A comparison of four DNA extraction protocols for the analysis of urine from patients with visceral leishmaniasis. Rev Soc Bras Med Trop 47(2):193–197

    Article  Google Scholar 

  • Yoshiyasu F, Momoko N, Tomoko Y et al (2006) Degraded and oxetane-bearing limonoids from the roots of Melia azedarach. Chem Pharm Bull 54(8):1219–1222

    Article  Google Scholar 

  • Zhang Z, Liu J (2016) Molecularly imprinted polymers with DNA aptamer fragments as macromonomers. ACS Appl Mater Interfaces 8(10):6371–6378

    Article  CAS  Google Scholar 

  • Zhao W, Wolfender JL, Hostettmann K et al (1998) Antifungal alkaloids and limonoid derivatives from Dictamnus dasycarpus. Phytochemistry 47(1):7–11

    Article  CAS  Google Scholar 

Download references

Funding

This work was funded by the Natural Science Foundation of Shaanxi Province (No. 2019JQ-582) and the Doctoral Scientific Research Starting Foundation of Baoji University of Arts and Science (No. ZK2018048 and No. ZK2017045).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ji Lei or Zongxiao Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lei, J., Gou, X., Wei, S. et al. Spectroscopy, Thermodynamics and Molecular Docking of Fraxinellone with DNA. Bull Environ Contam Toxicol 104, 864–870 (2020). https://doi.org/10.1007/s00128-020-02860-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00128-020-02860-7

Keywords

Navigation