Skip to main content
Log in

Schlafstörungen in der Gynäkologie: Schwangerschaft, Geburt, Stillzeit, Älter-Werden

Sleep disorders in gynecology: pregnancy, birth, breastfeeding and aging

  • Frauengesundheit in der Praxis
  • Published:
Der Gynäkologe Aims and scope

Zusammenfassung

Das komplexe biologische Phänomen Schwangerschaft geht mit deutlichen Veränderungen des Schlafs einher. Ein- und Durchschlafstörungen, Atmungsstörungen und das Restless-Legs-Syndrom treten gehäuft auf. Melatonin ist einerseits der beste Biomarker unserer zirkadianen Rhythmik und fördert Schlaf, erfüllt andererseits auch als stärkstes bekanntes Antioxidans wichtige biologische Funktionen in der Reproduktion. Selbst der Geburtszeitpunkt und die Wehentätigkeit hängen mit nächtlichen Melatoninspiegeln zusammen. Die Säuglings- und Kleinkindphase beeinflusst den mütterlichen Schlaf deutlicher und anders als den Schlaf der Väter. Dem Eintritt der Menopause gehen niedrige nächtliche Melatoninspiegel voraus und sie bedeuten oft dramatisch verschlechterten Schlaf. Älter-Werden in einem industriell entwickelten Umfeld geht besonders für Frauen oft mit chronobiologisch nachteiligem Mangel an Tageslichtexposition in der Aktivitätsphase und erhöhter Kunstlichtexposition in der Ruhephase einher. Eine schlafmedizinisch fundierte Beratung kann schweren Schwangerschaftskomplikationen vorbeugen und die oft von Schlafproblemen geprägte Stillzeit einfacher machen. Schlaf, Gesundheit und Lebensqualität älterer Patientinnen können durch die Integration von psychologischen, schlafmedizinischen und chronobiologischen Faktoren in die frauenärztliche Versorgung verbessert werden.

Abstract

Pregnant women experience profound changes in sleep. The prevalence of sleep disorders such as insomnia, sleep apnoea and restless legs syndrome, which are potentially harmful for the unborn child, rises sharply in pregnancy. Melatonin is a strong marker of our circadian rhythm and promotes sleep. It also exhibits an extremely strong antioxidant potential, which makes it extremely important for the development of new life. Even the intensity and timing of labour and parturition correspond to melatonin levels. Nursing and infant age impact maternal sleep differently and more profoundly than they do paternal sleep. The menopausal transition is preceded by lowered nocturnal melatonin levels and frequently leads to dramatically worsened sleep. Aging females are more affected by the sleep-impairing side effects of modern life like low illumination levels during daytime and increased artificial light in the nocturnal resting period. Integrating sleep medicine into patient care can prevent serious pregnancy complications and lessen sleep disruptions during the nursing period. Sleep, health and quality of life of aging female patients can be improved through the integration of psychological, chronobiological and sleep medical factors into gynecological patient care.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2

Literatur

  1. Sedov ID, Cameron EE, Madigan S, Tomfohr-Madsen LM (2018) Sleep quality during pregnancy: a meta-analysis. Sleep Med Rev 38:168–176. https://doi.org/10.1016/j.smrv.2017.06.005

    Article  PubMed  Google Scholar 

  2. Bazalakova M (2017) Sleep disorders in pregnancy. Semin Neurol 37(6):661–668. https://doi.org/10.1055/s-0037-1608843

    Article  PubMed  Google Scholar 

  3. Richter D, Krämer MD, Tang NKY, Montgomery-Downs HE, Lemola S (2019) Long-term effects of pregnancy and childbirth on sleep satisfaction and duration of first-time and experienced mothers and fathers. Sleep. https://doi.org/10.1093/sleep/zsz015

    Article  PubMed  Google Scholar 

  4. Silvestri R, Aricò I (2019) Sleep disorders in pregnancy. Sleep Sci 12(3):232–239. https://doi.org/10.5935/1984-0063.20190098

    Article  PubMed  PubMed Central  Google Scholar 

  5. Williams MA, Miller RS, Qiu C, Cripe SM, Gelaye B, Enquobahrie D (2010) Associations of early pregnancy sleep duration with trimester-specific blood pressures and hypertensive disorders in pregnancy. Sleep 33(10):1363–1371. https://doi.org/10.1093/sleep/33.10.1363

    Article  PubMed  PubMed Central  Google Scholar 

  6. Lee KA, Gay CL (2004) Sleep in late pregnancy predicts length of labor and type of delivery. Am J Obstet Gynecol 191(6):2041–2046. https://doi.org/10.1016/j.ajog.2004.05.086

    Article  PubMed  Google Scholar 

  7. Facco FL, Corette PB, Reddy UM, Silver RM, Koch MA, Judette LM et al (2017) Association between sleep-disordered breathing and hypertensive disorders of pregnancy and gestational diabetes mellitus. Obstet Gynecol Clin North Am 129(1):31–41. https://doi.org/10.1097/AOG.0000000000001805

    Article  Google Scholar 

  8. Facco FL, Ouyang DW, Zee PC, Grobman WA (2014) Sleep disordered breathing in a high-risk cohort prevalence and severity across pregnancy. Am J Perinatol 31(10):899–904. https://doi.org/10.1055/s-0033-1363768

    Article  PubMed  PubMed Central  Google Scholar 

  9. American Academy of Sleep Medicine (2014) The international classification of sleep disorders, 3. Aufl. American Academy of Sleep Medicine, Darien

  10. Manconi M, Ulfberg J, Berger K, Ghorayeb I, Wesström J, Fulda S et al (2012) When gender matters: restless legs syndrome. Report of the “RLS and woman” workshop endorsed by the European RLS Study Group. Sleep Med Rev 16(4):297–307. https://doi.org/10.1016/j.smrv.2011.08.006

    Article  PubMed  Google Scholar 

  11. Cassel W, Kesper K, Bauer A, Grieger F, Schollmayer E, Joeres L, Trenkwalder C (2016) Significant association between systolic and diastolic blood pressure elevations and periodic limb movements in patients with idiopathic restless legs syndrome. Sleep Med 17:109–120. https://doi.org/10.1016/j.sleep.2014.12.019

    Article  PubMed  Google Scholar 

  12. Clemens S, Rye D, Hochman S (2006) Restless legs syndrome: revisiting the dopamine hypothesis from the spinal cord perspective. Neurology 67(1):125–130. https://doi.org/10.1212/01.wnl.0000223316.53428.c9

    Article  PubMed  Google Scholar 

  13. Cesnik E, Casetta I, Turri M, Govoni V, Granieri E, Strambi Ferini L, Manconi M (2010) Transient RLS during pregnancy is a risk factor for the chronic idiopathic form. Neurology 75(23):2117–2120. https://doi.org/10.1212/WNL.0b013e318200d779

    Article  PubMed  CAS  Google Scholar 

  14. Okatani Y, Okamoto K, Hayashi K, Wakatsuki A, Tamura S, Sagara Y (1998) Maternal-fetal transfer of melatonin in pregnant women near term. J Pineal Res 25(3):129–134. https://doi.org/10.1111/j.1600-079x.1998.tb00550.x

    Article  PubMed  CAS  Google Scholar 

  15. Reiter RJ (1991) Pineal melatonin: cell biology of its synthesis and of its physiological interactions. Endocr Rev 12(2):151–180. https://doi.org/10.1210/edrv-12-2-151

    Article  PubMed  CAS  Google Scholar 

  16. Hardeland R, Madrid JA, Tan D‑X, Reiter RJ (2012) Melatonin, the circadian multioscillator system and health: the need for detailed analyses of peripheral melatonin signaling. J Pineal Res 52(2):139–166. https://doi.org/10.1111/j.1600-079X.2011.00934.x

    Article  PubMed  CAS  Google Scholar 

  17. Lanoix D, Guérin P, Vaillancourt C (2012) Placental melatonin production and melatonin receptor expression are altered in preeclampsia: new insights into the role of this hormone in pregnancy. J Pineal Res 53(4):417–425. https://doi.org/10.1111/j.1600-079X.2012.01012.x

    Article  PubMed  CAS  Google Scholar 

  18. Nakamura Y, Tamura H, Kashida S, Takayama H, Yamagata Y, Karube A et al (2001) Changes of serum melatonin level and its relationship to feto-placental unit during pregnancy. J Pineal Res 30(1):29–33. https://doi.org/10.1034/j.1600-079x.2001.300104.x

    Article  PubMed  CAS  Google Scholar 

  19. McCarthy R, Jungheim ES, Fay JC, Bates K, Herzog ED, England SK (2019) Riding the rhythm of Melatonin through pregnancy to deliver on time. Front Endocrinol 10:616. https://doi.org/10.3389/fendo.2019.00616

    Article  Google Scholar 

  20. Hobson SR, Gurusinghe S, Lim R, Alers NO, Miller SL, Kingdom JC, Euan WM (2018) Melatonin improves endothelial function in vitro and prolongs pregnancy in women with early-onset preeclampsia. J Pineal Res 65(3):e12508. https://doi.org/10.1111/jpi.12508

    Article  PubMed  CAS  Google Scholar 

  21. Braam W, Ehrhart F, Maas APHM, Smits MG, Curfs L (2018) Low maternal melatonin level increases autism spectrum disorder risk in children. Res Dev Disabil 82:79–89. https://doi.org/10.1016/j.ridd.2018.02.017

    Article  PubMed  Google Scholar 

  22. Cagnacci A, Soldani R, Melis Benedetto G, Volpe A (1998) Diurnal rhythms of labor and delivery in women: modulation by parity and seasons. Am J Obstet Gynecol 178(1):140–145. https://doi.org/10.1016/S0002-9378(98)70641-6

    Article  PubMed  CAS  Google Scholar 

  23. Lindow SW, Jha RR, Thompson JW (2000) 24 hour rhythm to the onset of preterm labour. BJOG 107(9):1145–1148. https://doi.org/10.1111/j.1471-0528.2000.tb11114.x

    Article  PubMed  CAS  Google Scholar 

  24. Olcese J, Lozier S, Paradise C (2013) Melatonin and the circadian timing of human parturition. Reprod Sci 20(2):168–174. https://doi.org/10.1177/1933719112442244

    Article  PubMed  CAS  Google Scholar 

  25. Reiter RJ, Tan DX, Korkmaz A, Rosales-Corral SA (2014) Melatonin and stable circadian rhythms optimize maternal, placental and fetal physiology. Hum Reprod Update 20(2):293–307. https://doi.org/10.1093/humupd/dmt054

    Article  PubMed  CAS  Google Scholar 

  26. Wolke D, Bilgin, Ayten, Muthanna S (2017) Systematic review and meta-analysis: fussing and crying durations and prevalence of colic in infants. J Pediatr 185:55–61.e4. https://doi.org/10.1016/j.jpeds.2017.02.020

    Article  PubMed  Google Scholar 

  27. Karacan I, Williams RL, Hursch CJ, McCaulley M, Heine MW (1969) Some implications of the sleep patterns of pregnancy for postpartum emotional disturbances. Br J Psychiatry 115(525):929–935. https://doi.org/10.1192/bjp.115.525.929

    Article  PubMed  CAS  Google Scholar 

  28. Insana SP, Montgomery-Downs, Hawley E (2013) Sleep and sleepiness among first-time postpartum parents: a field- and laboratory-based multimethod assessment. Dev Psychobiol 55(4):361–372. https://doi.org/10.1002/dev.21040

    Article  PubMed  Google Scholar 

  29. Carlin RF, Moon RY (2017) Risk factors, protective factors, and current recommendations to reduce sudden infant death syndrome: a review. JAMA Pediatr 171(2):175–180. https://doi.org/10.1001/jamapediatrics.2016.3345

    Article  PubMed  Google Scholar 

  30. Cassel W, Cassel P (2019) Guter Schlaf im besten Alter. Gynäkol Endokrinol 17(1):49–55. https://doi.org/10.1007/s10304-018-0221-z

    Article  Google Scholar 

  31. Karasek M (2004) Melatonin, human aging, and age-related diseases. Exp Gerontol 39(11-12):1723–1729. https://doi.org/10.1016/j.exger.2004.04.012

    Article  PubMed  CAS  Google Scholar 

  32. Fischer D, Lombardi DA, Marucci-Wellman H, Roenneberg T (2017) Chronotypes in the US—Influence of age and sex. PLoS ONE 12(6):e178782. https://doi.org/10.1371/journal.pone.0178782

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Ohayon MM, Carskadon MA, Guilleminault C, Vitiello MV (2004) Meta-analysis of quantitative sleep parameters from childhood to old age in healthy individuals: developing normative sleep values across the human lifespan. Sleep 27(7):1255–1273. https://doi.org/10.1093/sleep/27.7.1255

    Article  PubMed  Google Scholar 

  34. Beker-Acay M, Turamanlar O, Horata E, Unlu E, Nurdan F, Oruc S (2016) Assessment of pineal gland volume and calcification in healthy subjects: is it related to aging? J Belgian Soc Radiol 100(1):13. https://doi.org/10.5334/jbr-btr.892

    Article  Google Scholar 

  35. Lambert GW, Reid C, Kaye DM, Jennings GL, Esler MD (2002) Effect of sunlight and season on serotonin turnover in the brain. Lancet 360(9348):1840–1842. https://doi.org/10.1016/S0140-6736(02)11737-5

    Article  PubMed  CAS  Google Scholar 

  36. Obayashi K, Saeki K, Iwamoto J, Okamoto N, Tomioka K, Nezu S et al (2012) Positive effect of daylight exposure on nocturnal urinary melatonin excretion in the elderly: a cross-sectional analysis of the HEIJO-KYO study. J Clin Endocrinol Metab 97(11):4166–4173. https://doi.org/10.1210/jc.2012-1873

    Article  PubMed  CAS  Google Scholar 

  37. Turner PL, Mainster MA (2008) Circadian photoreception: ageing and the eye’s important role in systemic health. Br J Ophthalmol 92(11):1439–1444. https://doi.org/10.1136/bjo.2008.141747

    Article  PubMed  CAS  Google Scholar 

  38. Mishima K, Okawa M, Shimizu T, Hishikawa Y (2001) Diminished melatonin secretion in the elderly caused by insufficient environmental illumination. J Clin Endocrinol Metab 86(1):129–134. https://doi.org/10.1210/jcem.86.1.7097

    Article  PubMed  CAS  Google Scholar 

  39. Štefan L, Vrgoč G, Rupčić T, Sporiš G, Sekulić D (2018) Sleep duration and sleep quality are associated with physical activity in elderly people living in nursing homes. Int J Environ Res Public Health. https://doi.org/10.3390/ijerph15112512

    Article  PubMed  PubMed Central  Google Scholar 

  40. Holst Andersen LP, Gögenur I, Rosenberg J, Reiter RJ (2016) The safety of melatonin in humans. Clin Drug Investig 36(3):169–175. https://doi.org/10.1007/s40261-015-0368-5

    Article  CAS  Google Scholar 

  41. Lemoine P, Nir T, Laudon M, Zisapel N (2007) Prolonged-release melatonin improves sleep quality and morning alertness in insomnia patients aged 55 years and older and has no withdrawal effects. J Sleep Res 16(4):372–380. https://doi.org/10.1111/j.1365-2869.2007.00613.x

    Article  PubMed  Google Scholar 

  42. Mets MAJ, Volkerts ER, Olivier B, Verster JC (2010) Effect of hypnotic drugs on body balance and standing steadiness. Sleep Med Rev 14(4):259–267. https://doi.org/10.1016/j.smrv.2009.10.008

    Article  PubMed  Google Scholar 

  43. Otmani S, Metzger D, Guichard N, Danjou P, Nir T, Zisapel N, Katz A (2012) Effects of prolonged-release melatonin and zolpidem on postural stability in older adults. Hum Psychopharmacol 27(3):270–276. https://doi.org/10.1002/hup.2219

    Article  PubMed  CAS  Google Scholar 

  44. Otmani S, Demazières A, Staner C, Jacob N, Nir T, Zisapel N, Staner L (2008) Effects of prolonged-release melatonin, zolpidem, and their combination on psychomotor functions, memory recall, and driving skills in healthy middle aged and elderly volunteers. Hum Psychopharmacol 23(8):693–705. https://doi.org/10.1002/hup.980

    Article  PubMed  CAS  Google Scholar 

  45. Spinedi E, Cardinali DP (2019) Neuroendocrine-metabolic dysfunction and sleep disturbances in neurodegenerative disorders: focus on alzheimer’s disease and melatonin. Neuroendocrinology 108(4):354–364. https://doi.org/10.1159/000494889

    Article  PubMed  CAS  Google Scholar 

  46. Wade AG, Farmer M, Harari G, Fund N, Laudon M, Nir T et al (2014) Add-on prolonged-release melatonin for cognitive function and sleep in mild to moderate Alzheimer’s disease: a 6-month, randomized, placebo-controlled, multicenter trial. Clin Interv Aging 9:947–961. https://doi.org/10.2147/CIA.S65625

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Martínez-Campa C, Menéndez-Menéndez J, Alonso-González C, González A, Álvarez-García V, Cos S (2017) What is known about melatonin, chemotherapy and altered gene expression in breast cancer. Oncol Lett 13(4):2003–2014. https://doi.org/10.3892/ol.2017.5712

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Danilov A, Kurganova J (2016) Melatonin in chronic pain syndromes. Pain Ther 5(1):1–17. https://doi.org/10.1007/s40122-016-0049-y

    Article  PubMed  PubMed Central  Google Scholar 

  49. Grossman E (2013) Should melatonin be used to lower blood pressure? Hypertens Res 36(8):682–683. https://doi.org/10.1038/hr.2013.29

    Article  PubMed  Google Scholar 

  50. Amstrup AK, Sikjaer T, Heickendorff L, Mosekilde L, Rejnmark L (2015) Melatonin improves bone mineral density at the femoral neck in postmenopausal women with osteopenia: a randomized controlled trial. J Pineal Res 59(2):221–229. https://doi.org/10.1111/jpi.12252

    Article  PubMed  CAS  Google Scholar 

  51. Lee J‑Y, Duk-Chul L (2014) Urine 6‑sulfatoxymelatonin levels are inversely associated with arterial stiffness in post-menopausal women. Maturitas 78(2):117–122. https://doi.org/10.1016/j.maturitas.2014.03.010

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Werner Cassel.

Ethics declarations

Interessenkonflikt

W. Cassel erhält Vortrags und Autorenhonorare von der Medice Arzneimittel Pütter GmbH und Vortagshonorare und Honorare für Beratungstätigkeiten von der Vanda Pharmaceuticals Deutschland GmbH. P. Cassel gibt an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Additional information

Redaktion

Klaus Friese, Oberaudorf

Gisela Gille, Lüneburg

Katrin Schaudig, Hamburg

Anneliese Schwenkhagen, Hamburg

Klaus Vetter, Berlin

figure qr

QR-Code scannen & Beitrag online lesen

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cassel, W., Cassel, P. Schlafstörungen in der Gynäkologie: Schwangerschaft, Geburt, Stillzeit, Älter-Werden. Gynäkologe 54, 783–790 (2021). https://doi.org/10.1007/s00129-021-04844-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00129-021-04844-y

Schlüsselwörter

Keywords

Navigation