Skip to main content
Log in

Optimization via multimodel simulation

A new approach to optimization of cyclone separator geometries

  • RESEARCH PAPER
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

Increasing computational power and the availability of 3D printers provide new tools for the combination of modeling and experimentation. Several simulation tools can be run independently and in parallel, e.g., long running computational fluid dynamics simulations can be accompanied by experiments with 3D printers. Furthermore, results from analytical and data-driven models can be incorporated. However, there are fundamental differences between these modeling approaches: some models, e.g., analytical models, use domain knowledge, whereas data-driven models do not require any information about the underlying processes. At the same time, data-driven models require input and output data, but analytical models do not. The optimization via multimodel simulation (OMMS) approach, which is able to combine results from these different models, is introduced in this paper. We believe that OMMS improves the robustness of the optimization, accelerates the optimization-via-simulation process, and provides a unified approach. Using cyclonic dust separators as a real-world simulation problem, the feasibility of this approach is demonstrated and a proof-of-concept is presented. Cyclones are popular devices used to filter dust from the emitted flue gasses. They are applied as pre-filters in many industrial processes including energy production and grain processing facilities. Pros and cons of this multimodel optimization approach are discussed and experiences from experiments are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. http://www.freecadweb.org

  2. Source code and data for performing experiments from this study are available at http://www.gm.fh-koeln.de/~bartz/bart16e. The open source R software package SPOT can be downloaded from https://cran.r-project.org.

References

  • Barth W (1956) Berechnung und Auslegung von Zyklonabscheidern aufgrund neuerer Untersuchungen. Brennstoff-Wärme-Kraft 8(1):1–9

    Google Scholar 

  • Bartz-Beielstein T (2016) Stacked generalization of surrogate models - a practical approach. Technical Report 5/2016, TH Köln, Köln. https://cos.bibl.th-koeln.de/frontdoor/index/index/docId/375. Accessed 31 Oct 2017

  • Bartz-Beielstein T, Zaefferer M (2017) Model-based methods for continuous and discrete global optimization. Appl Soft Comput 55:154–167

    Article  Google Scholar 

  • Bartz-Beielstein T, Lasarczyk C, Preuss M (2005) Sequential parameter optimization. In: McKay B et al (eds) Proceedings 2005 congress on evolutionary computation (CEC’05), Edinburgh, Scotland. IEEE Press, Piscataway, pp 773–780

  • Barzier MK, Perry CJ (1991) An approach to the construction and usage of simulation modeling in the shipbuilding industry. In: Nelson BL, Kelton WD, Clark GM (eds) 1991 winter simulation conference proceedings. IEEE, pp 455–464

  • Breiman L (1996) Stacked regression. Mach Learn 24:49–64

    MathSciNet  MATH  Google Scholar 

  • Bucila C, Caruana R, Niculescu-Mizil A (2006) Model compression: making big, slow models practical. In: Proceedings of the 12th international conference on knowledge discovery and data Mining (KDD’06)

  • Chaudhuri A, Haftka RT, Ifju P, Chang K, Tyler C, Schmitz T (2015) Experimental flapping wing optimization and uncertainty quantification using limited samples. Struct Multidiscip Optim 51(4):957–970

    Article  Google Scholar 

  • Dempster AP (1968) A generalization of bayesian inference. J R Stat Soc Ser B Methodol 30(2):205–247

    MathSciNet  MATH  Google Scholar 

  • Elsayed K, Lacor C (2010) Optimization of the cyclone separator geometry for minimum pressure drop using mathematical models and CFD simulations. Chem Eng Sci 65(22):6048–6058

    Article  Google Scholar 

  • Elsayed K, Lacor C (2012) CFD modeling and multi-objective optimization of cyclone geometry using desirability function, artificial neural networks and genetic algorithms. Appl Math Model 37(8):5680–5704

    Article  Google Scholar 

  • Fishwick PA, Zeigler BP (1992) A multimodel methodology for qualitative model engineering. ACM Trans Model Comput Simul 2(1):52–81

    Article  MATH  Google Scholar 

  • Forrester A, Sóbester A, Keane A (2007) Multi-fidelity optimization via surrogate modelling. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Science 463(2088):3251–3269

    Article  MathSciNet  MATH  Google Scholar 

  • Fu MC (1994) Optimization via simulation: a review. Ann Oper Res 53(1):199–247

    Article  MathSciNet  MATH  Google Scholar 

  • Goel T, Haftka RT, Shyy W, Queipo NV (2007) Ensemble of surrogates. Struct Multidiscip Optim 33(3):199–216

    Article  Google Scholar 

  • Haftka RT (2016) Requirements for papers focusing on new or improved global optimization algorithms. Struct Multidiscip Optim 54(1):1–1

    Article  Google Scholar 

  • Haftka RT, Villanueva D, Chaudhuri A (2016) Parallel surrogate-assisted global optimization with expensive functions—a survey. Struct Multidiscip Optim 54(1):3–13

    Article  MathSciNet  Google Scholar 

  • Hinton G, Vinyals O, Dean J (2015) Distilling the knowledge in a neural Network. arXiv:1503.02531

  • Hoekstra AJ, Derksen JJ, Van Den Akker HEA (1999) An experimental and numerical study of turbulent swirling flow in gas cyclones. Chem Eng Sci 54(13-14):2055–2065

    Article  Google Scholar 

  • Hoffmann AC, Stein LE (2007) Gas cyclones and swirl tubes. Springer, Berlin

    Google Scholar 

  • Jin Y (2003) A comprehensive survey of fitness approximation in evolutionary computation. Soft Comput 9 (1):3–12

    Article  Google Scholar 

  • Jin R, Chen W, Simpson TW (2001) Comparative studies of metamodelling techniques under multiple modelling criteria. Struct Multidiscip Optim 23(1):1–13

    Article  Google Scholar 

  • Kazemi P, Khalid MH, Szlek J, Mirtič A, Reynolds GK, Jachowicz R, Mendyk A (2016) Computational intelligence modeling of granule size distribution for oscillating milling. Powder Technol 301 (Supplement C):1252–1258

    Article  Google Scholar 

  • Kleijnen JPC (2008) Design and analysis of simulation experiments. Springer, New York

    MATH  Google Scholar 

  • Kleijnen JPC (2014) Simulation-optimization via Kriging and bootstrapping: a survey. Journal of Simulation 8(4):241–250

    Article  Google Scholar 

  • Konan A, Huckaby D (2015) Modeling and simulation of a gas-solid cyclone during an upset event (presentation). OpenFOAM Workshop

  • Law AM (2007) Simulation modeling and analysis, 4th edn. McGraw-Hill, New York

    Google Scholar 

  • LeBlanc M, Tibshirani R (1996) Combining estiamates in regression and classification. J Am Stat Assoc 91(436):1641

    MATH  Google Scholar 

  • Löffler F (1988) Staubabscheiden. Thieme, Stuttgart

    Google Scholar 

  • Meerschaert MM (2013) Mathematical modeling (fourth edition), 4th edn. Elsevier, Amsterdam

    Google Scholar 

  • Mothes H, Loeffler F (1984) Bewegung und Abscheidung der Partikel im Zyklon. Chem-Tech-Ing 56:714–715

    Article  Google Scholar 

  • Müller J, Shoemaker CA (2014) Influence of ensemble surrogate models and sampling strategy on the solution quality of algorithms for computationally expensive black-box global optimization problems. J Glob Optim 60(2):123–144

    Article  MathSciNet  MATH  Google Scholar 

  • Murphy KP (2012) Machine learning: a probabilistic perspective. MIT Press, Cambridge

    MATH  Google Scholar 

  • Muschelknautz E (1972) Die Berechnung von Zyklonabscheidern für Gase. Chemie Ingenieur Technik 44(1-2):63–71

    Article  Google Scholar 

  • Nelson BL (1995) Stochastic modeling: analysis and simulation. Dover, New York

    MATH  Google Scholar 

  • OpenFOAM Foundation (2016) OpenFOAM tutorials lagrangian MPPICFoam cyclone. Official OpenFOAM repository. https://github.com/OpenFOAM/. Accessed 16 Nov 2016

  • Overcamp TJ, Mantha SV (1998) A simple method for estimating cyclone efficiency. Environ Prog 17(2):77–79

    Article  Google Scholar 

  • Preen R, Bull L (2014) Towards the coevolution of novel vertical-axis wind turbines. IEEE Trans Evol Comput PP(99):284–294

    Google Scholar 

  • Santner TJ, Williams BJ, Notz WI (2003) The design and analysis of computer experiments. Springer, Berlin

    Book  MATH  Google Scholar 

  • Simpson T, Toropov V, Balabanov V, Viana F (2012) Design and analysis of computer experiments in multidisciplinary design optimization: a review of how far we have come - or not. In: 12th AIAA/ISSMO multidisciplinary analysis and optimization conference. American Institute of Aeronautics and Astronautics, Reston, pp 1–22

  • Turner AJ, Balestrini-Robinson S, Mavris D (2013) Heuristics for the regression of stochastic simulations. Journal of Simulation 7(4):229–239

    Article  Google Scholar 

  • Wolpert DH (1992) Stacked generalization. Neural Netw 5(2):241–259

    Article  Google Scholar 

  • Wolpert DH, Macready WG (1997) No free lunch theorems for optimization. IEEE Trans Evol Comput 1(1):67–82

    Article  Google Scholar 

  • Yang Y (2003) Regression with multiple candidate models: selecting or mixing?. Stat Sin 13(3):783–809

    MathSciNet  MATH  Google Scholar 

  • Zaefferer M, Breiderhoff B, Naujoks B, Friese M, Stork J, Fischbach A, Flasch O, Bartz-Beielstein T (2014) Tuning multi-objective optimization algorithms for cyclone dust separators. In: Proceedings of the 2014 conference on genetic and evolutionary computation, GECCO ’14. ACM, New York, pp 1223–1230

  • Zeigler BP, Oren TI (1986) Multifaceted, multiparadigm modeling perspectives: tools for the 90’s. In: Proceedings of the 18th conference on winter simulation. ACM, New York, pp 708–712

  • Zerpa LE, Queipo NV, Pintos S, Salager J-L (2005) An optimization methodology of alkaline–surfactant–polymer flooding processes using field scale numerical simulation and multiple surrogates. J Pet Sci Eng 47(3):197–208

    Article  Google Scholar 

Download references

Acknowledgements

This work is part of a project that has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No. 692286. We would like to thank Horst Stenzel, Beate Breiderhoff, Dimitri Gusew, Aylin Mengi, Baris Kabacali, Jerome Tünte, Lukas Büscher, Sascha Wüstlich, and Thomas Friesen for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Bartz-Beielstein.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bartz-Beielstein, T., Zaefferer, M. & Pham, Q.C. Optimization via multimodel simulation. Struct Multidisc Optim 58, 919–933 (2018). https://doi.org/10.1007/s00158-018-1934-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-018-1934-2

Keywords

Navigation