Skip to main content
Log in

Toplogical optimization of structures using Fourier representations

  • RESEARCH PAPER
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

The minimization of compliance subject to a mass constraint is the topology optimization design problem of interest. The goal is to determine the optimal configuration of material within an allowed volume. Our approach builds upon the well-known density method in which the decision variable is the material density in every cell in a mesh. In it’s most basic form the density method consists of three steps: 1) the problem is convexified by replacing the integer material indicator function with a volume fraction, 2) the problem is regularized by filtering the volume fraction field to impose a minimum length scale; 3) the filtered volume fraction is penalized to steer the material distribution toward binary designs. The filtering step is used to yield a mesh-independent solution and to eliminate checkerboard instabilities. In image processing terms this is a low-pass filter, and a consequence is that the decision variables are not independent and a change of basis could significantly reduce the dimension of the nonlinear programming problem. Based on this observation, we represent the volume fraction field with a truncated Fourier representation. This imposes a minimal length scale on the problem, eliminates checkerboard instabilities, and also reduces the number of decision variables by over 100 × (two dimensions) or 1000 × (three dimensions).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  • Amrosio L, Buttazaro G (1993) An optimal-design problem with perimeter penalization. Calc Var Partial Differ Equ 1(1):55–69

    Article  MathSciNet  Google Scholar 

  • Bendsoe MP (1989) Optimal shape design as a material distribution problem. Struct Optim 1:193–202

    Article  Google Scholar 

  • Bendsoe MP, Sigmund O (2003) Topology optimization theory, methods, and applications. Springer, Berlin

    MATH  Google Scholar 

  • Bourdin B (2001) Filters in topology optimization. Int J Num Meth Eng 50:2143–2158

    Article  MathSciNet  MATH  Google Scholar 

  • Bruns TE, Tortorelli DA (2001) Topology optimization of nonlinear elastic structures and compliant mechanisms. Comput Methods Appl Mech Eng 190:26–27

    Article  MATH  Google Scholar 

  • Bruns TE, Tortorelli DA (2003) An element removal and rein- troduction strategy for the topology optimization of structures and compliant mechanisms. Int J Numer Methods Eng 57(10):1413–1430

    Article  MATH  Google Scholar 

  • Burger M, Hackl B, Ring W (2004) Incorporating topological derivatives into level set methods. J Comput Phys 194:344–364

    Article  MathSciNet  MATH  Google Scholar 

  • Chen J, Shapiro V (2008) Optimization of continuous heterogenous models. Heterog Objects Model Appl: Lect Notes Comput Sci 4889:193–213

    Article  Google Scholar 

  • Frigo M, Johnson SG (2005) The design and implementation of fftw3. Proc IEEE 93(2):216–231

    Article  Google Scholar 

  • Gomes A, Suleman A (2006) Application of spectral level set methodology in topology optimization. Struct Multi Optim 31:430–443

    Article  MathSciNet  MATH  Google Scholar 

  • Guest TBJK, Prevost JH (2004) Achieving minimum length scale in topology optimization using nodal design variables and projection functions. Int J Numer Meth Eng 61(2):238–254

    Article  MathSciNet  MATH  Google Scholar 

  • Guest JK, Smith Genut LC (2010) Reducing dimensionality in topology optimization using adaptive design variable fields. Int J Numer Meth Eng 81(8):1019–1045

    MATH  Google Scholar 

  • Guo X, Zhang W, Zhong W (2014) Doing topology optimization explicitly and geometrically-a new moving morphable components based framework. J Appl Mech-Trans ASME 81(8):p081009

    Article  Google Scholar 

  • Haber RB, Jog CS, Bendsoe MP (1996) A new approach to variable-topology shape design using a constraint on perimeter. Struct Optim 11(1):1–12

    Article  Google Scholar 

  • Kang Z, Wang Y (2011) Structural topology optimization based on non-local Shepard interpolation of density field. Comp Meth Appl Mech Eng 200(49-52):3515–3525

    Article  MathSciNet  MATH  Google Scholar 

  • Kim YY, Yoon GH (2000) Multi-resolution multi-scale topology optimization - a new paradigm. Int J Solids Struct 37(39):5529–5559

    Article  MathSciNet  MATH  Google Scholar 

  • Kolev T (2013) MFEM: Modular finite element methods. http:www.mfem.org

  • Körner TW (1988) Fourier analysis. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  • Lazarov BS, Sigmund O (2011) Filters in topology optimization based on helmholtz-type differential equations. Int J Numer Meth Eng 86:765–781

    Article  MathSciNet  MATH  Google Scholar 

  • Luo Z, Zhang N, Wang Y, Gao W (2013) Topology optimization of structures using meshless density variable approximants. Int J Numer Meth Eng 93(4):443–464

    Article  MathSciNet  MATH  Google Scholar 

  • Niordson F (1983) Optimal-design of elastic plates with a constraint on the slope of the thickness function. Int J Solids Struct 19(2):141–151

    Article  MathSciNet  MATH  Google Scholar 

  • Norato J, Bendsoe M, Tortorelli D (2007) Topological derivative method for topology optimization. Struct Multidiscip Optim 33:375–386

    Article  MathSciNet  MATH  Google Scholar 

  • Norato JA, Bell BK, Tortorelli DA (2015) A geometry projection method for continuum-based topology optimization with discrete elements. Comp Meth App Mech Eng 293:306–327

    Article  MathSciNet  Google Scholar 

  • Poulsen T (2002) Topology optimization in wavelet space. Int J Numer Meth Eng 53:567–582

    Article  MathSciNet  MATH  Google Scholar 

  • Qian X (2013) Topology optimization in b-spline space. Comp Meth Appl Mech Eng 265:15–35

    Article  MathSciNet  MATH  Google Scholar 

  • Rozvany GIN (2001) Aims, scope, methods, history, and unified terminology of computer aided optimization in structural mechanics. Struct Multidiscip Opt 21(2):90–108

    Article  MathSciNet  Google Scholar 

  • Sayood K (2012) Introduction to data compression. Morgan Kaufmann, Burlington

    MATH  Google Scholar 

  • Sethian JA, Wiegmann A (2000) Structural boundary design via level set and immersed interface methods. J Comput Phys 163:489–528

    Article  MathSciNet  MATH  Google Scholar 

  • Shapiro ABV, Tsukanov I (2004) Heterogeneous material modeling with distance fields. Comp Aided Geom Des 21:215–232

    Article  MathSciNet  MATH  Google Scholar 

  • Sidmund O, Petersson J (1998) Numerical instabilities in topology optimization A survey on procedures dealing with checkerboards, mesh-dependencies and local minima. Struct Optim 16: 68–75

    Article  Google Scholar 

  • van Dijk N, Maute K, van Keulen F (2013) Level-set methods for structural topology optimization: a review. Struct Multidiscip Optim 48:437–472

    Article  MathSciNet  Google Scholar 

  • Wächter A, Biegler LT (2006) On the implementation of a primal-dual interior point filter line search algorithm for large-scale nonlinear programming. Math Programm 106(1):5–57

    Article  MATH  Google Scholar 

  • Wang M, Wang X, Guo D (2003) A level set method for structural topology optimization. Comput Methods Appl Mech Eng 192:227–246

    Article  MathSciNet  MATH  Google Scholar 

  • Wächter A, Biegler LT (2005) Line search filter methods for nonlinear programming Motivation and global convergence. SIAM J Optim 16(1):1–31

    Article  MathSciNet  MATH  Google Scholar 

  • Wang F, Boyan L, Sigmund O (2011) On projection methods, convergence and robust forumations in topology optimization. Struct Multidiscip Optim 43:767–784

    Article  MATH  Google Scholar 

  • Wang Y, Kang Z, He Q (2013) An adaptive refinement approach for topology optimization based on separated density field description. Comput Struct 117:10–22

    Article  Google Scholar 

  • Wang Y, Kang Z, He Q (2014) Adaptive topology optimization with independent error control for separated displacement and density fields. Comput Struct 135:50–61

    Article  Google Scholar 

  • Zhang S, Norato JA, Gain AL, Lyu N (2016) A geometry projection method for the topology optimization of plate structures. Struct Multidiscip Optim 54(5, SI):1173–1190

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel A. White.

Additional information

Responsible Editor: Hyunsun Alicia Kim

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

White, D.A., Stowell, M.L. & Tortorelli, D.A. Toplogical optimization of structures using Fourier representations. Struct Multidisc Optim 58, 1205–1220 (2018). https://doi.org/10.1007/s00158-018-1962-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-018-1962-y

Keywords

Navigation