Skip to main content
Log in

Void growth and morphology evolution during ductile failure in an FCC single crystal

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

Void growth and morphology evolution are studied using a 3D representative volume element with a spherical void embedded in an FCC single crystal. The plastic flow contours are studied to determine the scenarios leading to fully plastic flow and plastic flow with elastic region. Further, the effect of anisotropy on void growth is studied through three initial crystallographic orientations (ICOs) [100], [110], & [111] with respect to loading direction. Void growth and macroscopic stress variations with applied strain are obtained from our simulations. It is observed that the peak stress corresponds to rapid void growth initiation. The peak stress is found to be dependent on void volume fraction and ICO. Furthermore, an additional geometrical parameter, diagonal distortions \((D_{d_{i}})\) is introduced to classify the non-spheroidal void shapes observed in deformed anisotropic crystal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Gurson, A.L.: Continuum theory of ductile rupture by void nucleation and growth: Part I- yield criteria and flow rules for porous ductile media. J. Eng. Mater. Technol. 99(76), 2–15 (1977)

    Article  Google Scholar 

  2. Benzerga, A.A., Leblond, J.B., Needleman, A., Tvergaard, V.: Ductile failure modeling. Int. J. Fract. 201(1), 29–80 (2016)

    Article  Google Scholar 

  3. Khan, A., Liu, H.: A new approach for ductile fracture prediction on Al 2024–T351 alloy. Int. J. Plast 35, 1–12 (2012)

    Article  Google Scholar 

  4. Bower, A.F., Wininger, E.: A two-dimensional finite element method for simulating the constitutive response and microstructure of polycrystals during high temperature plastic deformation. J. Mech. Phys. Solids 52(6), 1289–1317 (2004)

    Article  ADS  MATH  Google Scholar 

  5. Keralavarma, S.M., Benzerga, A.A.: A constitutive model for plastically anisotropic solids with non-spherical voids. J. Mech. Phys. Solids 58(6), 874–901 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Yerra, S.K., Tekog̃lu, C., Scheyvaerts, F., Delannay, L., Van Houtte, P., Pardoen, T.: Void growth and coalescence in single crystals. Int. J. Solids Struct. 47(7–8), 1016–1029 (2010)

    Article  MATH  Google Scholar 

  7. Rice, J.R., Tracey, D.M.: On the ductile enlargement of voids in triaxial stress fields. J. Mech. Phys. Solids 17(3), 201–217 (1969)

    Article  ADS  Google Scholar 

  8. Nagpal, V., McClintock, F. A., Berg, C. A., Subudhi, M.: Traction-displacement boundary conditions for plastic fracture by hole growth. In International symposium on foundations of plasticity, (1972)

  9. Needleman, A.: Void growth in an elastic-plastic medium. J. Appl. Mech. 39(4), 964–970 (1972)

    Article  ADS  Google Scholar 

  10. Haward, R.N., Owen, D.R.J.: The yielding of a two-dimensional void assembly in an organic glass. J. Mater. Sci. 8(8), 1136–1144 (1973)

    Article  ADS  Google Scholar 

  11. Tvergaard, V., Needleman, A.: Analysis of the cup-cone round tensile fracture. Acta Metall. 32(1), 157–169 (1984)

    Article  Google Scholar 

  12. Gologanu, M., Leblond, J.B., Devaux, J.: Approximate models for ductile metals containing non-spherical voids-Case of axisymmetric prolate ellipsoidal cavities. J. Mech. Phys. Solids 41(11), 1723–1754 (1993)

    Article  ADS  MATH  Google Scholar 

  13. Gologanu, M., Devaux, J., Leblond, J.B.: Approximate models for ductile metals containing nonspherical voids - case of axisymmetric oblate ellipsoidal cavities. J. Eng. Mater. Technol. 116(July 1994), 290–297 (1994)

    Article  MATH  Google Scholar 

  14. Monchiet, V., Cazacu, O., Charkaluk, E., Kondo, D.: Macroscopic yield criteria for plastic anisotropic materials containing spheroidal voids. Int. J. Plast 24(7), 1158–1189 (2008)

    Article  MATH  Google Scholar 

  15. Monchiet, V., Bonnet, G.: A Gurson-type model accounting for void size effects. Int. J. Solids Struct. 50(2), 320–327 (2013)

    Article  Google Scholar 

  16. Benzerga, A.A., Leblond, J.B.: Effective yield criterion accounting for microvoid coalescence. J. Appl. Mech. Trans. Asme 81(3), 4–7 (2014)

    Article  Google Scholar 

  17. Keralavarma, S.M., Chockalingam, S.: A criterion for void coalescence in anisotropic ductile materials. Int. J. Plast 82(7), 159–176 (2016)

    Article  Google Scholar 

  18. Torki, M.E., Tekoglu, C., Leblond, J.B., Benzerga, A.A.: Theoretical and numerical analysis of void coalescence in porous ductile solids under arbitrary loadings. Int. J. Plast 91(1), 160–181 (2017)

    Article  Google Scholar 

  19. Thomason, P.: Ductile Fracture of Metals. Pergamon Press, Oxford (1990)

    Google Scholar 

  20. Tvergaard, V.: Influence of voids on shear band instabilities under plane strain conditions. Int. J. Fract. 17(4), 389–407 (1981)

    Article  Google Scholar 

  21. Xu, W., Ferry, M., Humphreys, F.J.: Spatial morphology of interfacial voids and other features generated at coarse silica particles in nickel during cold rolling and annealing. Scr. Mater. 60(10), 862–865 (2009)

    Article  Google Scholar 

  22. Pushkareva, M., Adrien, J., Maire, E., Segurado, J., Llorca, J., Weck, A.: Three-dimensional investigation of grain orientation effects on void growth in commercially pure titanium. Mater. Sci. Eng., A 671, 221–232 (2016)

    Article  Google Scholar 

  23. Crépin, J., Bretheau, T., Caldemaison, D.: Cavity growth and rupture of \(\beta \)-treated zirconium: A crystallographic model. Acta Mater. 44(12), 4927–4935 (1996)

    Article  ADS  Google Scholar 

  24. Madou, K., Leblond, J.B.: A Gurson-type criterion for porous ductile solids containing arbitrary ellipsoidal voids - I: Limit-analysis of some representative cell. J. Mech. Phys. Solids 60(5), 1020–1036 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  25. Babout, L., Maire, E., Buffière, J., Fougères, R.: Characterization by X-ray computed tomography of decohesion, porosity growth and coalescence in model metal matrix composites. Acta Mater. 49(11), 2055–2063 (2001)

    Article  ADS  Google Scholar 

  26. Benzerga, A.A., Besson, J., Pineau, A.: Anisotropic ductile fracture: Part I: experiments. Acta Mater. 52(15), 4623–4638 (2004)

    Article  ADS  Google Scholar 

  27. Khan, A.S., Liang, R.: Behaviors of three BCC metals during experiments and modeling. Int. J. Plast 16, 1443–1458 (2000)

    Article  MATH  Google Scholar 

  28. Morgeneyer, T.F., Starink, M.J., Sinclair, I.: Evolution of voids during ductile crack propagation in an aluminium alloy sheet toughness test studied by synchrotron radiation computed tomography. Acta Mater. 56(8), 1671–1679 (2008)

    Article  ADS  Google Scholar 

  29. Liu, Z.G., Wong, W.H., Guo, T.F.: Void behaviors from low to high triaxialities: transition from void collapse to void coalescence. Int. J. Plast 84, 183–202 (2016)

    Article  ADS  Google Scholar 

  30. Gan, Y.X., Kysar, J.W.: Cylindrical void in a rigid-ideally plastic single crystal III: hexagonal close-packed crystal. Int. J. Plast 23(4), 592–619 (2007)

    Article  MATH  Google Scholar 

  31. Weck, A., Wilkinson, D.S., Maire, E.: Observation of void nucleation, growth and coalescence in a model metal matrix composite using X-ray tomography. Mater. Sci. Eng., A 488(1), 435–445 (2008)

    Article  Google Scholar 

  32. Lecarme, L., Maire, E., Kumar, A., De Vleeschouwer, C., Jacques, L., Simar, A., Pardoen, T.: Heterogenous void growth revealed by in situ 3-D X-ray microtomography using automatic cavity tracking. Acta Mater. 63(1), 130–139 (2014)

    Article  ADS  Google Scholar 

  33. Pushkareva, M., Sket, F., Segurado, J., Llorca, J., Yandouzi, M., Weck, A.: Effect of grain orientation and local strains on void growth and coalescence in titanium. Mater. Sci. Eng., A 760(January), 258–266 (2019)

    Article  Google Scholar 

  34. Koplik, J., Needleman, A.: Void growth and coalescence in porous plastic solids. Int. J. Solids Struct. 24(8), 835–853 (1988)

    Article  Google Scholar 

  35. Xia, L., Fong Shih, C.: Ductile crack growth - I. A numerical study using computational cells with microstructurally-based length scales. J. Mech. Phys. Solids 43, 233–259 (1995)

    Article  ADS  MATH  Google Scholar 

  36. Xia, L., Fong Shih, C.: Ductile crack growth-II. void nucleation and geometry effects on macroscopic fracture behavior. J. Mech. Phys. Solids 43(12), 1953–1981 (1995)

    Article  ADS  MATH  Google Scholar 

  37. Xia, L., Fong, S.C., Hutchinson, J.W.: A computational approach to ductile crack growth under large scale yielding conditions. J. Mech. Phys. Solids 43(3), 389–413 (1995)

    Article  ADS  MATH  Google Scholar 

  38. Ruggieri, C., Panontin, T.L., Dodds, R.H.: Numerical modeling of ductile crack growth in 3-D using computational cell elements. Kluwer Academic Publishers, New York (1996)

    Book  Google Scholar 

  39. Kuna, M., Sun, D.Z.: Three-dimensional cell model analyses of void growth in ductile materials. Kluwer Academic Publishers, New York (1996)

    Book  Google Scholar 

  40. Faleskog, J., Shih, C.F.: Micromechanics of coalescence - I. Synergistic effects of elasticity, plastic yielding and multi-size-scale voids. J. Mech. Phys. Solids 45(1), 21–50 (1997)

    Article  ADS  Google Scholar 

  41. Faleskog, J., Gao, X., Fong Shih, C.: Cell model for nonlinear fracture analysis-I. Micromechanics calibration, (1998)

  42. Schacht, T., Untermann, N., Steck, E.: The influence of crystallographic orientation on the deformation behaviour of single crystals containing microvoids. Int. J. Plast 19, 1605–1626 (2003)

    Article  MATH  Google Scholar 

  43. Potirniche, G.P., Hearndon, J.L., Horstemeyer, M.F., Ling, X.W.: Lattice orientation effects on void growth and coalescence in fcc single crystals. Int. J. Plast 22(5), 921–942 (2006)

    Article  MATH  Google Scholar 

  44. Yang, M., Dong, X.: Simulation of lattice orientation effects on void growth and coalescence by crystal plasticity. Acta Metall. Sin. Engl. Lett. 22(1), 40–50 (2009)

    Article  Google Scholar 

  45. Ha, S., Kim, K.: Void growth and coalescence in f.c.c. single crystals. Int. J. Mech. Sci. 52(7), 863–873 (2010)

    Article  Google Scholar 

  46. Ling, C., Besson, J., Forest, S., Tanguy, B., Latourte, F., Bosso, E.: An elastoviscoplastic model for porous single crystals at finite strains and its assessment based on unit cell simulations. Int. J. Plast 84(1), 58–87 (2016)

    Article  Google Scholar 

  47. Garrison, W., Wojcieszynski, A., Iorio, L.: Recent advances in fracture, In The Minerals, Metals, and Materials Society, Florida, (1997)

  48. Garrison Jr., W.M., Moody, N.: Ductile fracture. J. Phys. Chem. solids 48, 1035–1074 (1987)

    Article  ADS  Google Scholar 

  49. Chezan, A.R., De Hosson, J.: Superplastic behavior of coarse-grained aluminum alloys. Mater. Sci. Eng. A 410–411, 120–123 (2005)

    Article  Google Scholar 

  50. Pardoen, T., Hutchinson, J.W.: An extended model for void growth and coalescence. J. Mech. Phys. Solids 48, 2467–2512 (2000)

    Article  ADS  MATH  Google Scholar 

  51. Ragab, A.R.: Application of an extended void growth model with strain hardening and void shape evolution to ductile fracture under axisymmetric tension. Eng. Fract. Mech. 71(11), 1515–1534 (2004)

    Article  Google Scholar 

  52. Ragab, A.R.: A model for ductile fracture based on internal necking of spheroidal voids. Acta Mater. 52(13), 3997–4009 (2004)

    Article  ADS  Google Scholar 

  53. Huang, Y.: Accurate dilatation rates for spherical voids in triaxial stress fields. Trans. ASME 58, 1084–85 (1991)

    Article  Google Scholar 

  54. Besson, J.: Continuum models of ductile fracture: a review 19, 3–52 (2010)

  55. Tvergaard, V., Nyvang Legarth, B.: Effects of anisotropy and void shape on cavitation instabilities. Int. J. Mech. Sci. 152, 81–87 (2019)

    Article  Google Scholar 

  56. Hill, R.: Generalized constitutive relations for incremental deformation of metal crystals by multislip. J. Mech. Phys. Solids 14(2), 95–102 (1966)

    Article  ADS  Google Scholar 

  57. Hill, R., Rice, J.R.: Constitutive analysis of elastic-plastic crystals at arbitrary strain. J. Mech. Phys. Solids 20(6), 401–413 (1972)

    Article  ADS  MATH  Google Scholar 

  58. Asaro, R.J.: Crystal Plasticity. J. Appl. Mech. 50(4b), 921 (1983)

    Article  ADS  MATH  Google Scholar 

  59. Huang, Y.: A user-material subroutine incorporating single crystal plasticity in the ABAQUS finite element program, Mech Report 178, Harvard University (1991)

  60. Kysar, J. W., Hall, P.: Addendum to A User-Material Subroutine Incorporating Single Crystal Plasticity in the ABAQUS Finite Element, Mech Report 178, Harvard University (1997)

  61. Peirce, D., Asaro, R.J., Needleman, A.: An analysis of nonuniform and localized deformation in ductile single crystals. Acta Metall. 30(6), 1087–1119 (1982)

    Article  Google Scholar 

  62. Chang, Y.W., Asaro, R.J.: Lattice rotations and localized shearing in single crystals. Arch. Mech. 32(3), 369–388 (1980)

    Google Scholar 

  63. Bower, A.F.: Applied Mechanics of Solids. CRC Press, Boca Raton (2009)

    Book  Google Scholar 

  64. Shu, J.Y.: Scale-dependent deformation of porous single crystals. Int. J. Plast 14(10–11), 1085–1107 (1998)

    Article  MATH  Google Scholar 

  65. Jacobsen, E.H.: Elastic spectrum of copper from temperature-diffuse scattering of X-Rays. Phys. Rev. 97(3), 654–659 (1954)

    Article  ADS  Google Scholar 

  66. Bridgman, P. W.: Studies in large plastic flow and fracture: with special emphasis on the effects of hydrostatic pressure, New York, p. 362 (1952)

  67. McMeeking, R.M.: Finite deformation analysis of crack-tip opening in elastic-plastic materials and implications for fracture. J. Mech. Phys. Solids 25(5), 357–381 (1977)

    Article  ADS  MathSciNet  Google Scholar 

  68. Budiansky, B., Hutchinson, J.W., Slutsky, S.: Void growth and collapse in viscous solids, Division of applied sciences. Harvard university, Cambridge (1982)

    MATH  Google Scholar 

Download references

Acknowledgements

Author MK and VC acknowledges funding from the Science and Engineering Research Board (SERB) through the ECR grant ECR/2016/002063.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Viswanath R. Chinthapenta.

Additional information

Communicated by Andreas Öchsner.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karanam, M.K., Chinthapenta, V.R. Void growth and morphology evolution during ductile failure in an FCC single crystal. Continuum Mech. Thermodyn. 33, 497–513 (2021). https://doi.org/10.1007/s00161-020-00922-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-020-00922-z

Keywords

Navigation