Skip to main content
Log in

Early osteoarthritis and microdialysis: a novel in vivo approach for measurements of biochemical markers in the perisynovium and intraarticularly

  • Experimental Study
  • Published:
Knee Surgery, Sports Traumatology, Arthroscopy Aims and scope

Abstract

The microdialysis technique was evaluated as a possible method to obtain local measurements of biochemical markers from knee joints with degenerative changes. Seven patients scheduled for arthroscopy of the knee due to minor to moderate degenerative changes had microdialysis catheters inserted under ultrasonographic guidance, intraarticularly and in the synovium-close tissue. Catheters were perfused at a rate of 2 μl/min for approximately 100 min with a Ringer solution containing radioactively labeled glucose, and the positions of the catheters were later visualized during arthroscopy. All intraarticular catheters and 6/7 subsynovial catheters were positioned correctly. Relative recovery (RR) was intraarticularly 0.64 ± 0.02 (mean ± SEM) and synovium-close 0.54 ± 0.06. Mean values of cartilage oligomeric matrix protein (COMP), aggrecan and glucosyl–galactosyl–pyridinoline in the intraarticular dialysates were 18.1 ± 7.0 U/l, 243.6 ± 108.6 ng/ml and 108.0 ± 29.0 pmol/ml, respectively. COMP and glucosyl–galactosyl–pyridinoline concentrations were significantly higher intraarticularly compared to perisynovial tissue (P < 0.05), whereas for aggrecan, no significant difference was found (P = 0.06). The microdialysis method can be used for intraarticular and subsynovial determination of metabolites in human knees at these sites. The present methodology displays a potential for future studies of simultaneous biochemical changes within and around joints.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Arner P, Bolinder J, Eliasson A, Lundin A, Ungerstedt U (1988) Microdialysis of adipose tissue and blood for in vivo lipolysis studies. Am J Physiol 255:E737–E742

    CAS  PubMed  Google Scholar 

  2. Clough GF (2005) Microdialysis of large molecules. AAPS J 7:E686–E692

    Article  CAS  PubMed  Google Scholar 

  3. Eckstein F, Guermazi A, Roemer FW (2009) Quantitative MR imaging of cartilage and trabecular bone in osteoarthritis. Radiol Clin North Am 47:655–673

    Article  PubMed  Google Scholar 

  4. Fellander-Tsai L, Hogberg E, Wredmark T, Arner P (2002) In vivo physiological changes in the synovial membrane of the knee during reperfusion after arthroscopy. A study using the microdialysis technique. J Bone Joint Surg Br 84:1194–1198

    Article  CAS  PubMed  Google Scholar 

  5. Garnero P (2006) Use of biochemical markers to study and follow patients with osteoarthritis. Curr Rheumatol Rep 8:37–44

    Article  PubMed  Google Scholar 

  6. Gineyts E, Garnero P, Delmas PD (2001) Urinary excretion of glucosyl-galactosyl pyridinoline: a specific biochemical marker of synovium degradation. Rheumatology (Oxford) 40:315–323

    Article  CAS  Google Scholar 

  7. Hannan MT, Felson DT, Pincus T (2000) Analysis of the discordance between radiographic changes and knee pain in osteoarthritis of the knee. J Rheumatol 27:1513–1517

    CAS  PubMed  Google Scholar 

  8. Helmy A, Carpenter KL, Skepper JN, Kirkpatrick PJ, Pickard JD, Hutchinson PJ (2009) Microdialysis of cytokines: methodological considerations, scanning electron microscopy, and determination of relative recovery. J Neurotrauma 26:549–561

    Article  PubMed  Google Scholar 

  9. Herrero-Beaumont G, Guerrero R, Sanchez-Pernaute O, Acebes C, Palacios I, Mas S, Rodriguez I, Egido J, Vivanco F (2001) Cartilage and bone biological markers in the synovial fluid of osteoarthritic patients after hyaluronan injections in the knee. Clin Chim Acta 308:107–115

    Article  CAS  PubMed  Google Scholar 

  10. Langberg H, Skovgaard D, Karamouzis M, Bulow J, Kjaer M (1999) Metabolism and inflammatory mediators in the peritendinous space measured by microdialysis during intermittent isometric exercise in humans. J Physiol 515(Pt 3):919–927

    Article  CAS  PubMed  Google Scholar 

  11. Langberg H, Skovgaard D, Petersen LJ, Bulow J, Kjar M (1999) Type I collagen synthesis and degradation in peritendinous tissue after exercise determined by microdialysis in humans. J Physiol 521:299–306

    Article  CAS  PubMed  Google Scholar 

  12. Lohmander LS, Saxne T, Heinegard DK (1994) Release of cartilage oligomeric matrix protein (COMP) into joint fluid after knee injury and in osteoarthritis. Ann Rheum Dis 53:8–13

    Article  CAS  PubMed  Google Scholar 

  13. MacLean DA, Bangsbo J, Saltin B (1999) Muscle interstitial glucose and lactate levels during dynamic exercise in humans determined by microdialysis. J Appl Physiol 87:1483–1490

    CAS  PubMed  Google Scholar 

  14. Malfait AM, Liu RQ, Ijiri K, Komiya S, Tortorella MD (2002) Inhibition of ADAM-TS4 and ADAM-TS5 prevents aggrecan degradation in osteoarthritic cartilage. J Biol Chem 277:22201–22208

    Article  CAS  PubMed  Google Scholar 

  15. Mikkelsen UR, Helmark IC, Kjaer M, Langberg H (2008) Prostaglandin synthesis can be inhibited locally by infusion of NSAIDS through microdialysis catheters in human skeletal muscle. J Appl Physiol 104:534–537

    Article  PubMed  Google Scholar 

  16. Momohara S, Okada N, Ikari K, Mizuno S, Okamoto H (2007) Dermatan sulfate in the synovial fluid of patients with knee osteoarthritis. Mod Rheumatol 17:301–305

    Article  CAS  PubMed  Google Scholar 

  17. Neidhart M, Hauser N, Paulsson M, DiCesare PE, Michel BA, Hauselmann HJ (1997) Small fragments of cartilage oligomeric matrix protein in synovial fluid and serum as markers for cartilage degradation. Br J Rheumatol 36:1151–1160

    Article  CAS  PubMed  Google Scholar 

  18. Owman H, Tiderius CJ, Neuman P, Nyquist F, Dahlberg LE (2008) Association between findings on delayed gadolinium-enhanced magnetic resonance imaging of cartilage and future knee osteoarthritis. Arthritis Rheum 58:1727–1730

    Article  PubMed  Google Scholar 

  19. Peterfy CG, Guermazi A, Zaim S, Tirman PF, Miaux Y, White D, Kothari M, Lu Y, Fye K, Zhao S, Genant HK (2004) Whole-Organ Magnetic Resonance Imaging Score (WORMS) of the knee in osteoarthritis. Osteoarthritis Cartilage 12:177–190

    Article  CAS  PubMed  Google Scholar 

  20. Poole AR, Ionescu M, Swan A, Dieppe PA (1994) Changes in cartilage metabolism in arthritis are reflected by altered serum and synovial fluid levels of the cartilage proteoglycan aggrecan. Implications for pathogenesis. J Clin Invest 94:25–33

    Article  CAS  PubMed  Google Scholar 

  21. Rosenberg K, Olsson H, Morgelin M, Heinegard D (1998) Cartilage oligomeric matrix protein shows high affinity zinc-dependent interaction with triple helical collagen. J Biol Chem 273:20397–20403

    Article  CAS  PubMed  Google Scholar 

  22. Rosendal L, Larsson B, Kristiansen J, Peolsson M, Sogaard K, Kjaer M, Sorensen J, Gerdle B (2004) Increase in muscle nociceptive substances and anaerobic metabolism in patients with trapezius myalgia: microdialysis in rest and during exercise. Pain 112:324–334

    Article  CAS  PubMed  Google Scholar 

  23. Sandy JD, Flannery CR, Neame PJ, Lohmander LS (1992) The structure of aggrecan fragments in human synovial fluid. Evidence for the involvement in osteoarthritis of a novel proteinase which cleaves the Glu 373-Ala 374 bond of the interglobular domain. J Clin Invest 89:1512–1516

    Article  CAS  PubMed  Google Scholar 

  24. Sandy JD, Verscharen C (2001) Analysis of aggrecan in human knee cartilage and synovial fluid indicates that aggrecanase (ADAMTS) activity is responsible for the catabolic turnover and loss of whole aggrecan whereas other protease activity is required for C-terminal processing in vivo. Biochem J 358:615–626

    Article  CAS  PubMed  Google Scholar 

  25. Scheller D, Kolb J (1991) The internal reference technique in microdialysis: a practical approach to monitoring dialysis efficiency and to calculating tissue concentration from dialysate samples. J Neurosci Methods 40:31–38

    Article  CAS  PubMed  Google Scholar 

  26. Simkin PA (2006) Fluid dynamics of the joint space and trafficking of matrix molecules. In: Seibel Markus, Robins Simon, Bilezikian John (eds) Dynamics of bone and cartilage metabolism. Academic Press, New York, pp 451–456

    Chapter  Google Scholar 

  27. Ungerstedt U, Hallstrom A (1987) In vivo microdialysis—a new approach to the analysis of neurotransmitters in the brain. Life Sci 41:861–864

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Danish Rheumatism Association, Danish Ministry of Health, Internal Affairs, Danish National Research Council, Danish Medical Research Council.

Conflict of interest statement

No authors of this manuscript have conflicts of interest that have influenced the work presented in this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ida Carøe Helmark.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Helmark, I.C., Mikkelsen, U.R., Krogsgaard, M.R. et al. Early osteoarthritis and microdialysis: a novel in vivo approach for measurements of biochemical markers in the perisynovium and intraarticularly. Knee Surg Sports Traumatol Arthrosc 18, 1617–1623 (2010). https://doi.org/10.1007/s00167-010-1115-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00167-010-1115-3

Keywords

Navigation