Skip to main content
Log in

Full thickness quadriceps tendon grafts with bone had similar material properties to bone-patellar tendon-bone and a four-strand semitendinosus grafts: a biomechanical study

  • KNEE
  • Published:
Knee Surgery, Sports Traumatology, Arthroscopy Aims and scope

Abstract

Purpose

Despite increasing interest in utilizing quadriceps tendon (QT) grafts in anterior cruciate ligament reconstruction (ACLR), data on the optimal quadriceps graft thickness are limited. The purpose of this study was to characterize the mechanical properties for the quadriceps tendon, comparing full-thickness (FT) QT grafts with and without bone to a partial-thickness (PT) QT graft, and comparing the three QT grafts to four-stranded semitendinosus (4-SST) and bone-patellar tendon-bone (BTB) grafts and one experimental graft, the two-stranded rectus femoris (RF).

Methods

Forty-eight (n = 48) young cadaveric grafts (mean age 32 ± 6 years) were utilized for testing with N = 8 specimens in each of the following groups; (1) FT QT with bone, (2) FT QT without bone, (3) PT QT without bone, (4) BTB, (5) RF, and (6) 4-SST. Each specimen was harvested and rigidly fixed in custom clamps to a dynamic tensile testing machine for biomechanical evaluation. Graft ultimate load and stiffness were recorded. Independent groups one-factor ANOVAs and Tukey’s pairwise comparisons were performed for statistical analyses.

Results

FT QT with bone and 4-SST grafts demonstrated similar ultimate loads to BTB grafts (both n.s), whereas PT QT demonstrate statistically significantly lower ultimate loads to BTB grafts (n.s) and 4-SST grafts (n.s). Furthermore, no statistically significant differences were observed between the ultimate loads of FT QT vs. PT QT grafts without bone (n.s) or between FT QT with vs. without bone (n.s). FT QT grafts with bone did not demonstrate statistically significantly greater ultimate loads than PT QT grafts without bone (n.s). The RF graft demonstrated statistically significantly lower ultimate loads to BTB grafts (p < 0.005) and 4-SST grafts (p < 0.014).

Conclusions

Full thickness QT grafts with bone had similar material properties to BTB and a 4-SST grafts, while Partial thickness QT graft without bone had significantly lower material properties than BTB and 4-SST, in a biomechanical setting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Amis AA, Dawkins GP (1991) Functional anatomy of the anterior cruciate ligament. Fibre bundle actions related to ligament replacements and injuries. J Bone Joint Surg Br 73:260–267

    Article  CAS  Google Scholar 

  2. Blauth W (1984) A new drill template for the operative treatment of injuries of the anterior cruciate ligament. Unfallheilkunde 87:463–466

    CAS  PubMed  Google Scholar 

  3. Carmichael JR, Cross MJ (2009) Why bone-patella tendon-bone grafts should still be considered the gold standard for anterior cruciate ligament reconstruction. Br J Sports Med 43:323–325

    Article  Google Scholar 

  4. Cavaignac E, Coulin B, Tscholl P, Nik Mohd Fatmy N, Duthon V, Menetrey J (2017) Is quadriceps tendon autograft a better choice than hamstring autograft for anterior cruciate ligament reconstruction? A comparative study with a mean follow-up of 3.6 years. Am J Sports Med 45:1326–1332

    Article  Google Scholar 

  5. Crum RJ, Kay J, Lesniak BP, Getgood A, Musahl V, de Sa D (2021) Bone versus all soft tissue quadriceps tendon autografts for anterior cruciate ligament reconstruction: a systematic review. Arthroscopy 37:1040–1052

    Article  Google Scholar 

  6. Fink C, Herbort M, Abermann E, Hoser C (2014) Minimally invasive harvest of a quadriceps tendon graft with or without a bone block. Arthrosc Tech 3:e509-513

    Article  Google Scholar 

  7. Fu FH, van Eck CF, Tashman S, Irrgang JJ, Moreland MS (2015) Anatomic anterior cruciate ligament reconstruction: a changing paradigm. Knee Surg Sports Traumatol Arthrosc 23:640–648

    Article  Google Scholar 

  8. Geib TM, Shelton WR, Phelps RA, Clark L (2009) Anterior cruciate ligament reconstruction using quadriceps tendon autograft: intermediate-term outcome. Arthroscopy 25:1408–1414

    Article  Google Scholar 

  9. Goldblatt JP, Fitzsimmons SE, Balk E, Richmond JC (2005) Reconstruction of the anterior cruciate ligament: meta-analysis of patellar tendon versus hamstring tendon autograft. Arthroscopy 21:791–803

    Article  Google Scholar 

  10. Han HS, Seong SC, Lee S, Lee MC (2008) Anterior cruciate ligament reconstruction: quadriceps versus patellar autograft. Clin Orthop Relat Res 466:198–204

    Article  Google Scholar 

  11. Harris NL, Smith DA, Lamoreaux L, Purnell M (1997) Central quadriceps tendon for anterior cruciate ligament reconstruction. Part I: morphometric and biomechanical evaluation. Am J Sports Med 25:23–28

    Article  CAS  Google Scholar 

  12. Iriuchishima T, Shirakura K, Yorifuji H, Fu FH (2012) Anatomical evaluation of the rectus femoris tendon and its related structures. Arch Orthop Trauma Surg 132:1665–1668

    Article  Google Scholar 

  13. LaPrade MD, Kallenbach SL, Aman ZS, Moatshe G, Storaci HW, Turnbull TL et al (2018) Biomechanical evaluation of the medial stabilizers of the patella. Am J Sports Med 46:1575–1582

    Article  Google Scholar 

  14. Lippe J, Armstrong A, Fulkerson JP (2012) Anatomic guidelines for harvesting a quadriceps free tendon autograft for anterior cruciate ligament reconstruction. Arthroscopy 28:980–984

    Article  Google Scholar 

  15. Lockwood WC, Marchetti DC, Dahl KD, Mikula JD, Williams BT, Kheir MM et al (2017) High-load preconditioning of human soft tissue hamstring grafts: an in vitro biomechanical analysis. Knee Surg Sports Traumatol Arthrosc 25:138–143

    Article  Google Scholar 

  16. Mabe I, Hunter S (2014) Quadriceps tendon allografts as an alternative to Achilles tendon allografts: a biomechanical comparison. Cell Tissue Bank 15:523–529

    Article  CAS  Google Scholar 

  17. Middleton KK, Hamilton T, Irrgang JJ, Karlsson J, Harner CD, Fu FH (2014) Anatomic anterior cruciate ligament (ACL) reconstruction: a global perspective. Part 1. Knee Surg Sports Traumatol Arthrosc 22:1467–1482

    Article  CAS  Google Scholar 

  18. Mouarbes D, Menetrey J, Marot V, Courtot L, Berard E, Cavaignac E (2019) Anterior cruciate ligament reconstruction: a systematic review and meta-analysis of outcomes for quadriceps tendon autograft versus bone-patellar tendon-bone and hamstring-tendon autografts. Am J Sports Med 47:3531–3540

    Article  Google Scholar 

  19. Norwood LA, Cross MJ (1979) Anterior cruciate ligament: functional anatomy of its bundles in rotatory instabilities. Am J Sports Med 7:23–26

    Article  CAS  Google Scholar 

  20. Noyes FR, Butler DL, Grood ES, Zernicke RF, Hefzy MS (1984) Biomechanical analysis of human ligament grafts used in knee-ligament repairs and reconstructions. J Bone Joint Surg Am 66:344–352

    Article  CAS  Google Scholar 

  21. Persson A, Fjeldsgaard K, Gjertsen JE, Kjellsen AB, Engebretsen L, Hole RM et al (2014) Increased risk of revision with hamstring tendon grafts compared with patellar tendon grafts after anterior cruciate ligament reconstruction: a study of 12,643 patients from the Norwegian Cruciate Ligament Registry, 2004–2012. Am J Sports Med 42:285–291

    Article  Google Scholar 

  22. Rahr-Wagner L, Thillemann TM, Pedersen AB, Lind M (2014) Comparison of hamstring tendon and patellar tendon grafts in anterior cruciate ligament reconstruction in a nationwide population-based cohort study: results from the danish registry of knee ligament reconstruction. Am J Sports Med 42:278–284

    Article  Google Scholar 

  23. Risberg MA, Oiestad BE, Gunderson R, Aune AK, Engebretsen L, Culvenor A et al (2016) Changes in knee osteoarthritis, symptoms, and function after anterior cruciate ligament reconstruction: a 20-year prospective follow-up study. Am J Sports Med 44:1215–1224

    Article  Google Scholar 

  24. Runer A, Wierer G, Herbst E, Hepperger C, Herbort M, Gföller P et al (2018) There is no difference between quadriceps- and hamstring tendon autografts in primary anterior cruciate ligament reconstruction: a 2-year patient-reported outcome study. Knee Surg Sports Traumatol Arthrosc 26:605–614

    Article  Google Scholar 

  25. Schmidt EC, Chin M, Aoyama JT, Ganley TJ, Shea KG, Hast MW (2019) Mechanical and microstructural properties of pediatric anterior cruciate ligaments and autograft tendons used for reconstruction. Orthop J Sports Med 7:2325967118821667

    PubMed  PubMed Central  Google Scholar 

  26. Shani RH, Umpierez E, Nasert M, Hiza EA, Xerogeanes J (2016) Biomechanical comparison of quadriceps and patellar tendon grafts in anterior cruciate ligament reconstruction. Arthroscopy 32:71–75

    Article  Google Scholar 

  27. Sheean AJ, Musahl V, Slone HS, Xerogeanes JW, Milinkovic D, Fink C et al (2018) Quadriceps tendon autograft for arthroscopic knee ligament reconstruction: use it now, use it often. Br J Sports Med 52:698–701

    Article  Google Scholar 

  28. Slone HS, Romine SE, Premkumar A, Xerogeanes JW (2015) Quadriceps tendon autograft for anterior cruciate ligament reconstruction: a comprehensive review of current literature and systematic review of clinical results. Arthroscopy 31:541–554

    Article  Google Scholar 

  29. Stäubli HU, Schatzmann L, Brunner P, Rincón L, Nolte LP (1999) Mechanical tensile properties of the quadriceps tendon and patellar ligament in young adults. Am J Sports Med 27:27–34

    Article  Google Scholar 

  30. Stäubli HU, Schatzmann L, Brunner P, Rincón L, Nolte LP (1996) Quadriceps tendon and patellar ligament: cryosectional anatomy and structural properties in young adults. Knee Surg Sports Traumatol Arthrosc 4:100–110

    Article  Google Scholar 

  31. Taylor KA, Cutcliffe HC, Queen RM, Utturkar GM, Spritzer CE, Garrett WE et al (2013) In vivo measurement of ACL length and relative strain during walking. J Biomech 46:478–483

    Article  CAS  Google Scholar 

  32. Tran TD, Tran QL (2018) A cadaveric study on the anatomy of anterior cruciate ligament in Vietnamese adults. Asia Pac J Sports Med Arthrosc Rehabil Technol 14:22–25

    PubMed  PubMed Central  Google Scholar 

  33. Urchek R, Karas S (2019) Biomechanical comparison of quadriceps and 6-strand hamstring tendon grafts in anterior cruciate ligament reconstruction. Orthop J Sports Med 7:2325967119879113

    Article  Google Scholar 

  34. van Eck CF, Schreiber VM, Mejia HA, Samuelsson K, van Dijk CN, Karlsson J et al (2010) “Anatomic” anterior cruciate ligament reconstruction: a systematic review of surgical techniques and reporting of surgical data. Arthroscopy 26:S2-12

    Article  Google Scholar 

  35. Woo SL, Hollis JM, Adams DJ, Lyon RM, Takai S (1991) Tensile properties of the human femur-anterior cruciate ligament-tibia complex. The effects of specimen age and orientation. Am J Sports Med 19:217–225

    Article  CAS  Google Scholar 

  36. Zaffagnini S, Signorelli C, Grassi A, Hoshino Y, Kuroda R, de Sa D et al (2018) Anatomic anterior cruciate ligament reconstruction using hamstring tendons restores quantitative pivot shift. Orthop J Sports Med 6:2325967118812364

    Article  Google Scholar 

Download references

Funding

This study was funded by Smith & Nephew.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc J. Strauss.

Ethics declarations

Conflicts of interest

Dr. Marc Strauss is a paid for educational consultant for Smith and Nephew and receives research grants from Smith and Nephew. Dr. Martin Lind is a paid for educational consultant for Smith and Nephew. Receives research grants from Smith and Nephew and is on the Editorial Boards of KSSTA and JEO. Dr. Gilbert Moatshe is a paid for educational consultant for Smith and Nephew. Dr. Lars Engebretsen is a paid for consultant for Arthrex and Smith and Nephew. Receives royalties from Arthrex, and research grants from Ossur, Biomet, and Smith and Nephew. Is on the Editorial Boards of AJSM, KSSTA and JEO. Is an editor for JBJS and BJSM. Dr. Robert LaPrade is a paid for consultant for Arthrex, Ossur, Linvatec and Smith and Nephew. Recieves royalties from Arthrex, Ossur, Elsevier and Smith and Nephew and research grants from Ossur and Smith and Nephew. Is on the Editorial Boards of AJSM, KSSTA and JEO. Authors John Miles, Grant Dornan and Mitchell declare that they have no conflicts of interest.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Strauss, M.J., Miles, J.W., Kennedy, M.L. et al. Full thickness quadriceps tendon grafts with bone had similar material properties to bone-patellar tendon-bone and a four-strand semitendinosus grafts: a biomechanical study. Knee Surg Sports Traumatol Arthrosc 30, 1786–1794 (2022). https://doi.org/10.1007/s00167-021-06738-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00167-021-06738-x

Keywords

Navigation