Skip to main content
Log in

Laser sinterability and characterization of oxide nano ceramics reinforced to biopolymer matrix

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Biocompatible nano oxide ceramics (TiO2, Al2O3, ZrO2 and hydroxyapatite) were added for reinforcement of the biocompatible polymer (polyetherketone, polycaprolactone) matrix during a selective laser sintering (SLS) process of the porous tissue engineering scaffolds. The optimal regime comparison for laser sintering on CO2 and Nd+3:YAG lasers, strain estimation and an influence of post thermal annealing on mechanical characteristics were carried out. Results of a microstructural evaluation of the polymer-reinforced ceramic composites were conducted using the optical and scanning electron microscopy equipped with the energy-dispersive X-ray microanalysis and evaluated with results of the X-ray analysis. The observations showed that after the successful laser sintering, the increase of the nano ceramic particle sizes could be achieved by one to two orders. The study confirms the medical perspectives of the SLS-fabricated 3D porous composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Schmidt M, Pohle D, Rechtenwald T (2007) Selective laser sintering of PEEK. Ann CIRP 56(1):205–208. doi:10.1016/j.cirp.2007.05.097

    Article  Google Scholar 

  2. Drummer D, Rietzel D, Kühnlein F (2010) Development of a characterization approach for the sintering behavior of new thermoplastics for selective laser sintering. Phys Procedia 5:533–542

    Article  Google Scholar 

  3. Goodridge RD, Tuck CJ, Hague RGM (2012) Laser sintering of polyamides and other polymers. Prog Mater Sci 57:229. doi:10.1016/j.pmatsci.2011.04.001

    Article  Google Scholar 

  4. Shishkovsky I, Scherbakov V (2012) Selective laser sintering of biopolymers with micro and nano ceramic additives for medicine. Phys Procedia 39:491–499. doi:10.1016/j.phpro.2012.10.065

    Article  Google Scholar 

  5. Goodridge RD, Shofner ML, Hague RJM et al (2011) Processing of a polyamide-12/carbon nanofibre composite by laser sintering. Polym Test 30:94–100. doi:10.1016/j.polymertesting.2010.10.011

    Article  Google Scholar 

  6. Hyun YT, Kim SE, Yun HS et al (2007) Fabrication of nano-HA/PCL composite scaffolds by modified rapid prototyping technique. Eur Cells Mater 14(1):66

    Google Scholar 

  7. Salmoria GV, Paggi RA, Lago A, Beal VE (2011) Microstructural and mechanical characterization of PA12/MWCNTs nanocomposite manufactured by selective laser sintering. Polym Test 30:611–615. doi:10.1016/j.polymertesting.2011.04.007

    Article  Google Scholar 

  8. Taboas JM, Maddox RD, Krebsbach PH, Hollister SJ (2003) Indirect solid free form fabrication of local and global porous, biomimetic and composite 3D polymer-ceramic scaffolds. Biomaterials 24:181–194

    Article  Google Scholar 

  9. Wiria FE, Leong KF, Chua CK, Liu Y (2007) Poly-epsilon-caprolactone/hydroxyapatite for tissue engineering scaffold fabrication via selective laser sintering. Acta Biomater 3:1–12. doi:10.1016/j.actbio.2006.07.008

    Article  Google Scholar 

  10. Yan C, Hao L, Xu L, Shi Y (2011) Preparation, characterization and processing of carbon fibre/polyamide-12 composites for selective laser sintering. Compos Sci Technol 71:1834–1841. doi:10.1016/j.compscitech.2011.08.013

    Article  Google Scholar 

  11. Shishkovsky IV, Morozov YG (2011) Multilayer polymer structures containing Ni/Cu nanoclusters as prepared by selective laser sintering. Int J Self Propagating High Temp Synth 20(1):53–60. doi:10.3103/S1061386211010134

    Article  Google Scholar 

  12. Shishkovsky IV, Juravleva IN (2014) Kinetics of polycarbonate distraction during laser-assisted sintering. Int J Adv Manuf 72:193–199. doi:10.1007/s00170-013-5575-8

    Article  Google Scholar 

  13. Zheng H, Zhang J, Lu S et al (2006) Effect of core–shell composite particles on the sintering behavior and properties of nano-Al2O3/polystyrene composite prepared by SLS. Mater Lett 60:1219–1223. doi:10.1016/j.matlet.2005.11.003

    Article  Google Scholar 

  14. Yan C, Shi Y, Yang J, Liu J (2009) Preparation and selective laser sintering of nylon-12 coated metal powders and post processing. J Mater Process Technol 209:5785–5792. doi:10.1016/j.jmatprotec.2009.06.010

    Article  Google Scholar 

  15. Deckers J, Jean-Pierre Kruth J, Shahzad K, Vleugels J (2012) Density improvement of alumina parts produced through selective laser sintering of alumina-polyamide composite powder. CIRP Ann Manuf Technol 61:211–214. doi:10.1016/j.cirp.2012.03.032

    Article  Google Scholar 

  16. Shishkovsky I, Volchkov S (2013) Influence of the laser assisted fabricated 3D porous scaffolds from bioceramoplasts of micron and nano sizes on culture of MMSC. Proc SPIE 9065:906515. doi:10.1117/12.2035550

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor Shishkovsky.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shishkovsky, I., Nagulin, K. & Sherbakov, V. Laser sinterability and characterization of oxide nano ceramics reinforced to biopolymer matrix. Int J Adv Manuf Technol 78, 449–455 (2015). https://doi.org/10.1007/s00170-014-6633-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-014-6633-6

Keywords

Navigation