Skip to main content
Log in

Convergence and inference for mixed Poisson random sums

  • Published:
Metrika Aims and scope Submit manuscript

Abstract

We study the limit distribution of partial sums with a random number of terms following a class of mixed Poisson distributions. The resulting weak limit is a mixture between a normal distribution and an exponential family, which we call by normal exponential family (NEF) laws. A new stability concept is introduced and a relationship between \(\alpha \)-stable distributions and NEF laws is established. We propose the estimation of the NEF model parameters through the method of moments and also by the maximum likelihood method via an Expectation–Maximization algorithm. Monte Carlo simulation studies are addressed to check the performance of the proposed estimators, and an empirical illustration of the financial market is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Azzalini A (1985) A class of distributions which includes the normal ones. Scand J Stat 12:171–178

    MathSciNet  MATH  Google Scholar 

  • Abramowitz M, Stegun IA (1965) Handb Math Funct. Dover Publications, New York

    Google Scholar 

  • Barndorff-Nielsen OE (1997) Normal inverse Gaussian distributions and stochastic volatility modelling. Scand J Stat 24:1–13

    Article  MathSciNet  Google Scholar 

  • Barndorff-Nielsen OE, Kent J, Sørensen M (1982) Normal variance-mean mixtures and z distributions. Int Stat Rev 50:145–159

    Article  MathSciNet  Google Scholar 

  • Barreto-Souza W (2015) Long-term survival models with overdispersed number of competing causes. Comput Stat Data Anal 91:51–63

    Article  MathSciNet  Google Scholar 

  • Barreto-Souza W, Simas AB (2016) General mixed Poisson regression models with varying dispersion. Stat Comput 26:1263–1280

    Article  MathSciNet  Google Scholar 

  • Bening VE, Korolev VYu (2005) On an application of the student distribution in the theory of probability and mathematical statistics. Theory Prob Appl 49:377–391

    Article  Google Scholar 

  • Dempster AP, Laird NM, Rubin DB (1977) Maximum likelihood from incomplete data via the EM algorithm. J R Stat Soc Ser B 39:1–38

    MathSciNet  MATH  Google Scholar 

  • Embrechts P, Kluppelberg C, Mikosch T (2003) Modell Extrem Events Insur Finance. Springer, Berlin

    Google Scholar 

  • Feller W (1971) An introduction to probability theory and its applications, 2nd edn. Wiley, New York

    MATH  Google Scholar 

  • Gavrilenko SV, Korolev VYu (2006) Convergence rate estimates for mixed Poisson random sums. Sistemy i Sredstva Informatiki. special issue pp 248–257

  • Gnedenko BV, Korolev VYu (1996) Random summation: limit theorems and applications. CRC Press, Boca Raton

    MATH  Google Scholar 

  • Gut A (2013) Probability: a graduate course. Springer, New York

    Book  Google Scholar 

  • Kalashnikov V (1997) Geometric sums: bounds for rare events with applications. Kluwer Acad. Publ, Dordrecht

    Book  Google Scholar 

  • Karlis D, Xekalaki E (2005) Mixed Poisson distributions. Int Stat Rev 73:35–58

    Article  Google Scholar 

  • Korolev VY (1999) On convergence of distributions of compound Cox processes to stable laws. Theory Prob Appl 43:644–650

    Article  Google Scholar 

  • Korolev VY, Shevtsova IG (2012) An improvement of the Berry–Esseen inequality with applications to Poisson and mixed Poisson random sums. Scand Actuar J 2012:81–105

    Article  MathSciNet  Google Scholar 

  • Korolev VY, Zeifman AI (2016) On convergence of the distributions of random sequences with independent random indexes to variance-mean mixtures. Stoch Models 32:414–432

    Article  MathSciNet  Google Scholar 

  • Korolev VY, Zeifman AI (2016) On normal variance-mean mixtures as limit laws for statistics with random sample sizes. J Stat Plann Inference 169:34–42

    Article  MathSciNet  Google Scholar 

  • Korolev VY, Dorofeeva A (2017) Bounds of the accuracy of the normal approximation to the distributions of random sums under relaxed moment conditions. Lith Math J 57:38–58

    Article  MathSciNet  Google Scholar 

  • Korolev VY, Zeifman A (2019) Generalized negative binomial distributions as mixed geometric laws and related limit theorems. Lith Math J 59:366–388

    Article  MathSciNet  Google Scholar 

  • Kotz S, Kozubowski T, Podgorski K (2001) The Laplace distribution and generalizations: a revisit with applications to communications, economics, engineering, and finance. Springer, Berlin

    Book  Google Scholar 

  • Kozubowski TJ, Rachev ST (1994) The theory of geometric stable distributions and its use in modeling financial data. Eur J Oper Res 74:310–324

    Article  Google Scholar 

  • Kruglov VM, Korolev VY (1990) Limit theorems for random sums. Izdatelstvo Moskovskogo Universiteta, Moscow (in Russian)

  • Louis TA (1982) Finding the observed information matrix when using the EM algorithm. J R Stat Soc Ser B 44:226–233

    MathSciNet  MATH  Google Scholar 

  • Mittnik S, Rachev ST (1989) Stable distributions for asset returns. Appl Math Lett 2:301–304

    Article  MathSciNet  Google Scholar 

  • Mittnik S, Rachev ST (1991) Alternative multivariate stable distributions and their applications to financial modeling. Stable Processes and Related Topics pp 107–119

  • Paulsen J (2008) Ruin models with investment income. Probab Surv 5:416–434

    Article  MathSciNet  Google Scholar 

  • Puig P, Barquinero JF (2010) An application of compound Poisson modelling to biological dosimetry. Proc R Soc A 467:897–910

    Article  MathSciNet  Google Scholar 

  • Rényi A (1956) A characterization of the Poisson process. Translated. In: Turan P (ed) Selected Papers of Alfréd Rényi, vol I. (Akad. Kiado, Budapest, 1976) pp 622–628

  • Sampson AR (1975) Characterizing exponential family distributions by moment generating functions. Ann Stat 3:747–753

    Article  MathSciNet  Google Scholar 

  • Shevtsova IG (2018) Convergence rate estimates in the global CLT for compound mixed Poisson distributions. Theory Probab Appl 63:72–93

    Article  MathSciNet  Google Scholar 

  • Schluter C, Trede M (2016) Weak convergence to the Student and Laplace distributions. J Appl Prob 53:121–129

    Article  MathSciNet  Google Scholar 

  • West M (1987) On scale mixtures of normal distributions. Biometrika 74:646–648

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We would like to express our gratitude to the referee for the insightful comments, suggestions, and careful reading which lead to an improvement in the presentation of our paper. G. Oliveira thanks the financial support from Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES-Brazil). W. Barreto-Souza acknowledges support for his research from the KAUST Research Fund, NIH 1R01EB028753-01, and the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq-Brazil, Grant Number 305543/2018-0). This work is part of the Ph.D. thesis of Gabriela Oliveira realized at the Department of Statistics of the Universidade Federal de Minas Gerais, Brazil.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wagner Barreto-Souza.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Proof of Theorem 2

Consider the change of variable \(W_\phi ^*=\phi W_\phi \). With this, we obtain that the density function of \(W_\phi ^*\) assumes the form (3) with \(\theta =\xi _0\), \(B(\theta )=-\phi b(\theta )\), \(R(y)=-\log \phi +c(y;\phi )\), and support \({\mathbb {S}}={\mathbb {R}}^+\). Then, we use Theorem 1 above to obtain the ch.f. of \(W_\phi ^*\). This immediately gives us the ch.f. of \(W_\phi \) as follows:

$$\begin{aligned} \varPsi _{W_\phi }(t) = \exp \left\{ -\phi \left[ b(\xi _0) - b\left( \xi _0 + \frac{it}{\phi }\right) \right] \right\} ,\quad t\in {\mathbb {R}}. \end{aligned}$$
(13)

From (13), we obtain that

$$\begin{aligned} \varPsi _{N_{\lambda }}(t) = \varPsi _{W_{\phi }}\left( \lambda (e^{it} - 1)\right) = \exp \left\{ -\phi \left[ b(\xi _0) - b\left( \xi _0 + \frac{i}{\phi }\lambda \left( e^{it} - 1\right) \right) \right] \right\} ,\quad t\in {\mathbb {R}}. \end{aligned}$$
(14)

The Tower Property of conditional expectations giwsves

$$\begin{aligned} \varPsi _{{\widetilde{S}}_{\lambda }}(t) = E\left[ E\left( \exp \left\{ it\left( a_{\lambda }\sum \limits _{i = 1}^{N_{\lambda }}(X_i + d_{\lambda })\right) \right\} \bigg | N_{\lambda }\right) \right] . \end{aligned}$$

Let \(G_{N_{\lambda }}(\cdot )\) denote the probability generating function of \(N_{\lambda }\). Then, we use (14) to obtain

$$\begin{aligned} \varPsi _{{\widetilde{S}}_{\lambda }}(t)= & {} G_{N_{\lambda }}\left( \varPsi _{X_1 - \mu }\left( \frac{t}{\sqrt{\lambda }}\right) e^{i\frac{\mu }{\lambda }t}\right) = \varPsi _{N_{\lambda }}\left( \frac{1}{i}\log \left\{ \varPsi _{X_1 - \mu }\left( \frac{t}{\sqrt{\lambda }}\right) e^{i\frac{\mu }{\lambda }t}\right\} \right) \nonumber \\= & {} \exp \left\{ - \phi \left[ b(\xi _0) - b\left( \xi _0 + \frac{i\lambda }{\phi }\left( \varPsi _{X_1 - \mu }\left( \frac{t}{\sqrt{\lambda }} \right) e^{i\frac{\mu }{\lambda }t} - 1\right) \right) \right] \right\} . \end{aligned}$$
(15)

Taking \(\lambda \rightarrow \infty \) and applying L’Hôpital’s rule twice (in the second-order derivative we are using the assumption of finite variance of \(X_1\)) we obtain

$$\begin{aligned} \lim \limits _{\lambda \rightarrow \infty } \varPsi _{{\widetilde{S}}_{\lambda }}(t) = \exp \left\{ -\phi \left[ b(\xi _0) - b\left( \xi _0 + \phi ^{-1}\left( it\mu - \frac{t^2\sigma ^2}{2}\right) \right) \right] \right\} \equiv \varPsi _Y(t), \quad \forall \; t \in {\mathbb {R}}. \end{aligned}$$

This completes the proof. \(\square \)

Proof of Theorem 3

If Y is MP-stable, then \({\mathcal {D}}(G)\ne \emptyset \). By Lévy’s Continuity Theorem and (15), the convergence in Expression (5) holds if and only if

$$\begin{aligned} \exp \left\{ -\phi \left[ b(\xi _0) - b\left( \xi _0 + \frac{\lambda }{\phi }(\varphi _{\lambda }(t) - 1)\right) \right] \right\} \xrightarrow [\lambda \rightarrow \infty ]{} \varPsi _Y(t), \end{aligned}$$
(16)

where \(\varphi _{\lambda }(t) = \varPsi _{X_1}(a_{\lambda }t)\exp (ita_{\lambda }d_{\lambda })\).

The first derivative of the function \(b(\cdot )\) is positive since it is equal to the mean of the exponential family (its support here is assumed to be \({\mathbb {R}}^+\), so that the mean is positive). This implies that \(b(\cdot )\) is strictly monotone increasing and therefore it is invertible. Using this invertibility, it follows that (16) is equivalent to

$$\begin{aligned} \lambda (\varphi _{\lambda }(t)-1) \xrightarrow [\lambda \rightarrow \infty ]{}\phi \left\{ b^{-1}\left( b(\xi _0) + \frac{1}{\phi }\log {\varPsi _Y(t)}\right) - \xi _0\right\} , \quad \forall t\in {\mathbb {R}}. \end{aligned}$$

We can take the limit above with \(\lambda = \lambda _n=n\in {\mathbb {N}}\) instead of \(\lambda \in {\mathbb {R}}\); \(\{\lambda _n\}\) can be seen as a subsequence. In this case, letting \(a_{\lambda }=a_n\) and \(d_{\lambda }=d_n\), it follows that

$$\begin{aligned} n(\varphi _{n}(t)-1) \xrightarrow [n\rightarrow \infty ]{}\phi \left\{ b^{-1}\left( b(\xi _0) + \frac{1}{\phi }\log {\varPsi _Y(t)}\right) - \xi _0\right\} ,\quad \forall t\in {\mathbb {R}}. \end{aligned}$$

From Theorem 1 in Chapter XVII in Feller (1971), the above limit implies that

$$\begin{aligned} (\varphi _{n}(t))^n \xrightarrow [n\rightarrow \infty ]{}\exp \left\{ \phi \left\{ b^{-1}\left[ b(\xi _0) + \frac{1}{\phi }\log {\varPsi _Y(t)}\right] - \xi _0\right\} \right\} ,\quad \forall t\in {\mathbb {R}}. \end{aligned}$$
(17)

Since the left side of (17) is the ch.f. of

$$\begin{aligned} a_{n}\sum \limits _{i = 1}^n(X_i + d_n), \end{aligned}$$

it follows that the right side of that equation is the ch.f. of some \(\alpha \)-stable random variable A [see Theorem 3.1, Chapter 9 in Gut (2013)], say \(\varPsi _A(t)\). Hence, we obtain

$$\begin{aligned} \varPsi _Y(t) = \exp \left\{ -\phi \left[ b(\xi _0) - b\left( \xi _0 + \frac{1}{\phi }\log {\varPsi _A(t)}\right) \right] \right\} , \end{aligned}$$

which gives us the sufficiency part of the theorem.

Conversely, if (6) holds and \(\varPsi _A(t)\) is the ch.f. of some \(\alpha \)-stable random variable A, then there exist an i.i.d. sequence \(\{X_n\}_{n\in {\mathbb {N}}}\) of random variables and real sequences \(\{a_n\}_{n\in {\mathbb {N}}}\) and \(\{d_n\}_{n\in {\mathbb {N}}}\) such that

$$\begin{aligned} a_{n}\sum \limits _{i = 1}^n(X_i + d_n)\xrightarrow [n\rightarrow \infty ]{d}U. \end{aligned}$$
(18)

Denote by \(\varPsi _{X_1}(t)\) the ch.f. of \(X_1\) and let \(\gamma _{n}(t) = \varPsi _{X_1}(a_n t)\exp (ita_n d_n)\), \(n\in {\mathbb {N}}\). Then, the weak limit in (18) is equivalent to

$$\begin{aligned} (\gamma _{n}(t))^n \xrightarrow [n\rightarrow \infty ]{}\varPsi _A(t),\quad \forall t\in {\mathbb {R}}. \end{aligned}$$

From Feller (1971), we have that the above limit implies that

$$\begin{aligned} n(\gamma _{n}(t)-1) \xrightarrow [n\rightarrow \infty ]{}\log \varPsi _A(t). \end{aligned}$$

Since by hypothesis

$$\begin{aligned} \varPsi _A(t) = \exp \left\{ \phi \left\{ b^{-1}\left( b(\xi _0) + \frac{1}{\phi }\log {\varPsi _Y(t)}\right) - \xi _0\right\} \right\} , \end{aligned}$$

we obtain that

$$\begin{aligned} n(\gamma _{n}(t)-1) \xrightarrow [n\rightarrow \infty ]{}\phi \left\{ b^{-1}\left( b(\xi _0) + \frac{1}{\phi }\log {\varPsi _Y(t)}\right) - \xi _0\right\} , \end{aligned}$$

which is equivalent to

$$\begin{aligned} \lambda (\gamma _{\lambda }(t)-1) \xrightarrow [\lambda \rightarrow \infty ]{}\phi \left\{ b^{-1}\left( b(\xi _0) + \frac{1}{\phi }\log {\varPsi _Y(t)}\right) - \xi _0\right\} . \end{aligned}$$

The above limit gives Eq. (16) with \(\gamma _{\lambda }(t)\) instead of \(\varphi _{\lambda }(t)\). This shows that \({\mathcal {D}}(G)\ne \emptyset \) and the proof is complete. \(\square \)

Proof of Proposition 1

By standard properties of conditional expectation and using the ch.f. of \(W_{\phi }\) given in (13), we obtain that

$$\begin{aligned}&\varPsi _{\mu W_{\phi } + \sigma \sqrt{W_{\phi }}Z}(t)\\&\quad =E\left( \exp \left\{ it(\mu W_{\phi } + \sigma \sqrt{W_{\phi }}Z)\right\} \right) \\&\quad = E\left[ E\left( \exp \{it(\mu W_{\phi } + \sigma \sqrt{W_{\phi }}Z)\}| W_{\phi }\right) \right] \\&\quad = \int \limits _{0}^{\infty }e^{it\mu w}E\left( e^{it\sigma \sqrt{w}Z}\right) f_{W_\phi }(w)dw\\&\quad = \int \limits _{0}^{\infty }\exp \left\{ w\left( it\mu -\frac{1}{2}t^2\sigma ^2\right) \right\} f_{W_\phi }(w)dw\\&\quad = \varPsi _{W_\phi }\left( t\mu + \frac{it^2\sigma ^2}{2}\right) \\&\quad = \exp \left\{ -\phi \left[ b(\xi _0) - b\left( \xi _0 + \frac{1}{\phi }\left( it\mu - \frac{1}{2}t^2\sigma ^2 \right) \right) \right] \right\} , \end{aligned}$$

which is the characteristic function given in Theorem 2. \(\square \)

Proof of Proposition 3

We have that

$$\begin{aligned}&E\left( W_{\phi }^Kg(W_{\phi })^L\Big |Y\right) = \int _{0}^{\infty } w^Kg(w)^L \dfrac{f_{Y|W}(y|w)f_W(w)}{f_Y(y)}dw=\\&\quad \dfrac{1}{f_Y(y)} \int _{0}^{\infty } \frac{w^Kg(w)^L}{\sqrt{2\pi \sigma ^2w}}\exp \left\{ -\frac{(y-\mu w)^2}{2\sigma ^2w} \right. \\&\quad \left. + \phi [-w + \log (\phi ) + \log (w)] - \log \varGamma (\phi )-\log w\right\} dw. \end{aligned}$$

By using the explicit form of the normal-gamma distribution density given in Expression (8), we get

$$\begin{aligned}&E\left( W_{\phi }^Kg^L(W_{\phi })\Big |Y\right) \\&\quad = \dfrac{\left( \frac{\mu ^2 + 2\phi \sigma ^2}{y^2}\right) ^{\frac{\phi }{2} - \frac{1}{4}}}{2{\mathcal {K}}_{\phi - \frac{1}{2}}\left( \sqrt{\left[ \frac{\mu ^2}{\sigma ^2}+2\phi \right] \frac{y^2}{\sigma ^2}}\right) }\\&\qquad \times \int _{0}^{\infty }g(w)^L\underbrace{w^{\left( \phi + K - \frac{1}{2}\right) - 1}\exp \left\{ -\frac{1}{2}\left[ \left( \frac{\mu ^2}{\sigma ^2} + 2\phi \right) w + \left( \frac{y^2}{\sigma ^2}\right) \frac{1}{w}\right] \right\} }_{\text {Kernel GIG}\left( \frac{\mu ^2}{\sigma ^2} + 2\phi , \frac{y^2}{\sigma ^2}, \phi + K - \frac{1}{2}\right) }dw. \end{aligned}$$

Denoting \(U \sim \text{ GIG }\left( a, b, p\right) \) with \(a = \frac{\mu ^2}{\sigma ^2} + 2\phi \), \(b = \frac{y^2}{\sigma ^2}\) and \(p = \phi + K - \frac{1}{2}\) and noting that the integrand above is the kernel of a GIG density function, we obtain the desired result. \(\square \)

Proof of Proposition 4

We have that

$$\begin{aligned}&E\left( W_{\phi }^Kg(W_{\phi })^L\big |Y=y\right) \\&\quad = \int _{0}^{\infty } w^Kg(w)^L \dfrac{f_{Y|W}(y|w)f_W(w)}{f_Y(y)}dw\\&\quad \dfrac{1}{f_Y(y)} \int _{0}^{\infty } w^Kg(w)^L \frac{1}{\sqrt{2\pi \sigma ^2w}}e^{-\frac{(y-\mu w)^2}{2\sigma ^2w}}e^{-\frac{\phi }{2}\left( w+\frac{1}{w}\right) + \frac{1}{2}\left( \log \phi - \log (2\pi w^3)\right) }dw. \end{aligned}$$

Let \(f_Y(y)\) be the NIG density function as given in (9) and denote \(U \sim \text{ GIG }\left( a, b, p\right) \) with \(a = \frac{\mu ^2}{\sigma ^2} + \phi \), \(b = \frac{y^2}{\sigma ^2} + \phi \) and \(p = K - 1\). It follows that

$$\begin{aligned}&E\left( W_{\phi }^Kg(W_{\phi })^L\big |Y=y\right) \\&\quad = \dfrac{\left( \frac{y^2 + \phi \sigma ^2}{\mu ^2 + \phi \sigma ^2}\right) ^{\frac{1}{2}}}{{\mathcal {K}}_{-1}\left( \sqrt{\left( \frac{\mu ^2}{\sigma ^2} + \phi \right) \left( \frac{y^2}{\sigma ^2} + \phi \right) }\right) }\\&\qquad \times \int _{0}^{\infty }g(w)^L\underbrace{w^{\left( K - 1\right) - 1}\exp \left\{ -\frac{1}{2}\left[ \left( \frac{\mu ^2}{\sigma ^2} + \phi \right) w + \left( \frac{y^2}{\sigma ^2} + \phi \right) \frac{1}{w}\right] \right\} }_{\text {Kernel GIG}\left( \frac{\mu ^2}{\sigma ^2} + \phi , \frac{y^2}{\sigma ^2} + \phi , K - 1\right) }dw\\&\quad = \dfrac{{\mathcal {K}}_{K - 1}(\sqrt{ab})}{{\mathcal {K}}_{-1}(\sqrt{ab})} \left( \dfrac{b}{a}\right) ^{\frac{K}{2}}E\left( g(U)^L\right) . \end{aligned}$$

This completes the proof. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oliveira, G., Barreto-Souza, W. & Silva, R.W.C. Convergence and inference for mixed Poisson random sums. Metrika 84, 751–777 (2021). https://doi.org/10.1007/s00184-020-00800-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00184-020-00800-3

Keywords

Mathematics Subject Classification

Navigation