Skip to main content
Log in

Absolute IGS antenna phase center model igs08.atx: status and potential improvements

  • Original Article
  • Published:
Journal of Geodesy Aims and scope Submit manuscript

Abstract

On 17 April 2011, all analysis centers (ACs) of the International GNSS Service (IGS) adopted the reference frame realization IGS08 and the corresponding absolute antenna phase center model igs08.atx for their routine analyses. The latter consists of an updated set of receiver and satellite antenna phase center offsets and variations (PCOs and PCVs). An update of the model was necessary due to the difference of about 1 ppb in the terrestrial scale between two consecutive realizations of the International Terrestrial Reference Frame (ITRF2008 vs. ITRF2005), as that parameter is highly correlated with the GNSS satellite antenna PCO components in the radial direction.

For the receiver antennas, more individual calibrations could be considered and GLONASS-specific correction values were added. For the satellite antennas, all correction values except for the GPS PCVs were newly estimated considering more data than for the former model. Satellite-specific PCOs for all GPS satellites active since 1994 could be derived from reprocessed solutions of five ACs generated within the scope of the first IGS reprocessing campaign. Two ACs separately derived a full set of corrections for all GLONASS satellites active since 2003.

Ignoring scale-related biases, the accuracy of the satellite antenna PCOs is on the level of a few cm. With the new phase center model, orbit discontinuities at day boundaries can be reduced, and the consistency between GPS and GLONASS results is improved. To support the analysis of low Earth orbiter (LEO) data, igs08.atx was extended with LEO-derived PCV estimates for big nadir angles in June 2013.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Altamimi Z, Sillard P, Boucher C (2002) ITRF2000: a new release of the International Terrestrial Reference Frame for Earth science applications. J Geophys Res 107(B10):2214. doi:10.1029/2001JB000561

    Google Scholar 

  • Altamimi Z, Collilieux X, Legrand J, Garayt B, Boucher C (2007) ITRF2005: a new release of the International Terrestrial Reference Frame based on time series of station positions and Earth orientation parameters. J Geophys Res 112(B9):B09401. doi:10.1029/2007JB004949

  • Altamimi Z, Collilieux X, Métivier L (2011) ITRF2008: an improved solution of the International Terrestrial Reference Frame. J Geod 85(8):457–473. doi:10.1007/s00190-011-0444-4

    Article  Google Scholar 

  • Baire Q, Bruyninx C, Legrand J, Pottiaux E, Aerts W, Defraigne P, Bergeot N, Chevalier JM (2014) Influence of different GPS receiver antenna calibration models on geodetic positioning. GPS Solut 18(4):529–539. doi:10.1007/s10291-013-0349-1

    Article  Google Scholar 

  • Boehm J, Niell A, Tregoning P, Schuh H (2006) Global Mapping Function (GMF): a new empirical mapping function based on numerical weather model data. Geophys Res Lett 33(7):L07304. doi:10.1029/2005GL025546

    Article  Google Scholar 

  • Boehm J, Heinkelmann R, Schuh H (2007) Short note: a global model of pressure and temperature for geodetic applications. J Geod 81(10):679–683. doi:10.1007/s00190-007-0135-3

    Article  Google Scholar 

  • Cardellach E, Elósegui P, Davis JL (2007) Global distortion of GPS networks associated with satellite antenna model errors. J Geophys Res 112(B7):B07405. doi:10.1029/2006JB004675

    Google Scholar 

  • Collilieux X, Métivier L, Altamimi Z, van Dam T, Ray J (2011) Quality assessment of GPS reprocessed terrestrial reference frame. GPS Solut 15(3):219–231. doi:10.1007/s10291-010-0184-6

    Article  Google Scholar 

  • Collilieux X, van Dam T, Ray J, Coulot D, Métivier L, Altamimi Z (2012) Strategies to mitigate aliasing of loading signals while estimating GPS frame parameters. J Geod 86(1):1–14. doi:10.1007/s00190-011-0487-6

    Article  Google Scholar 

  • Collilieux X, Schmid R (2013) Evaluation of the ITRF2008 GPS vertical velocities using satellite antenna \(z\)-offsets. GPS Solut 17(2):237–246. doi:10.1007/s10291-012-0274-8

    Article  Google Scholar 

  • Dach R, Hugentobler U, Fridez P, Meindl M (2007) Bernese GPS Software Version 5.0. Astronomical Institute, University of Bern. Available at http://www.bernese.unibe.ch/docs50/DOCU50.pdf

  • Dach R, Schmid R, Schmitz M, Thaller D, Schaer S, Lutz S, Steigenberger P, Wübbena G, Beutler G (2011) Improved antenna phase center models for GLONASS. GPS Solut 15(1):49–65. doi:10.1007/s10291-010-0169-5

    Article  Google Scholar 

  • Dilssner F, Springer T, Flohrer C, Dow J (2010) Estimation of phase center corrections for GLONASS-M satellite antennas. J Geod 84(8):467–480. doi:10.1007/s00190-010-0381-7

    Article  Google Scholar 

  • Dilssner F, Otten M, Springer T, Flohrer C, Svehla D, Zandbergen R (2011) GPS satellite antenna parameters from combined ground-based and space-borne data processing. EGU2011-12263, European Geosciences Union General Assembly 2011, Vienna

  • Dilssner F, Springer T, Schmid R, Enderle W (2012) Estimation of azimuthal satellite antenna phase center variations. IGS Workshop 2012, Olsztyn, Poland

  • Dilssner F, Springer T, Schönemann E, Enderle W (2014) Estimation of satellite antenna phase center corrections for BeiDou. IGS Workshop 2014, Pasadena, CA

  • Dow JM, Neilan RE, Rizos C (2009) The International GNSS Service in a changing landscape of global navigation satellite systems. J Geod 83(3–4):191–198. doi:10.1007/s00190-008-0300-3

    Article  Google Scholar 

  • Drinkwater MR, Floberghagen R, Haagmans R, Muzi D, Popescu A (2003) GOCE: ESA’s first Earth Explorer Core mission. Space Sci Rev 108(1–2):419–432. doi:10.1023/A:1026104216284

    Article  Google Scholar 

  • Edwards PG, Berruti B, Blythe P, Callies J, Carlier S, Fransen C, Krutsch R, Lefebvre A-R, Loiselet M, Stricker N (2006) The MetOp satellite: weather information from polar orbit. ESA Bulletin 127: 8–17

  • Ferland R (2003) IGS00(v2) final. IGSMAIL-4666, IGS Central Bureau, Pasadena

  • Fritsche B, Ivanov M, Kashkovsky A, Koppenwallner G, Kudryavtsev A, Voskoboinikov U, Zhukova G (1998) Radiation pressure forces on complex spacecraft. ESOC contract no. 11908/96/D/IM, Hypersonic Technology Göttingen (HTG)

  • Fritsche M, Dietrich R, Knöfel C, Rülke A, Vey S, Rothacher M, Steigenberger P (2005) Impact of higher-order ionospheric terms on GPS estimates. Geophys Res Lett 32(23):L23311. doi:10.1029/2005GL024342

    Article  Google Scholar 

  • Gendt G (2006) IGS switch to absolute antenna model and ITRF2005. IGSMAIL-5438, IGS Central Bureau, Pasadena

  • Haines B, Bar-Sever Y, Bertiger W, Desai SD, Harvey N, Weiss JP (2010) Improved models of the GPS satellite antenna phase- and group-delay variations using data from low-Earth orbiters. Abstract G54A-05, 2010 AGU Fall Meeting, San Francisco, CA

  • Haines BJ, Bar-Sever YE, Bertiger WI, Desai SD, Harvey N, Sibois AE, Weiss JP (2015) Realizing a terrestrial reference frame using the Global Positioning System. J Geophys Res 120(8):5911–5939. doi:10.1002/2015JB012225

    Article  Google Scholar 

  • Jäggi A, Hugentobler U, Beutler G (2006) Pseudo-stochastic orbit modeling techniques for low-Earth orbiters. J Geod 80(1):47–60. doi:10.1007/s00190-006-0029-9

    Article  Google Scholar 

  • Jäggi A, Dach R, Montenbruck O, Hugentobler U, Bock H, Beutler G (2009) Phase center modeling for LEO GPS receiver antennas and its impact on precise orbit determination. J Geod 83(12):1145–1162. doi:10.1007/s00190-009-0333-2

    Article  Google Scholar 

  • Jäggi A, Dilssner F, Schmid R, Dach R, Springer T, Bock H, Steigenberger P, Lutz S (2012) Extension of the GPS satellite antenna patterns to nadir angles beyond \(14^{\circ }\). IGS Workshop 2012, Olsztyn, Poland

  • Jarlemark P, Emardson R, Johansson J, Elgered G (2010) Ground-based GPS for validation of climate models: the impact of satellite antenna phase center variations. IEEE Trans Geosci Remote Sens 48(10):3847–3854. doi:10.1109/TGRS.2010.2049114

    Article  Google Scholar 

  • Kaniuth K, Stuber K (2002) The impact of antenna radomes on height estimates in regional GPS networks. In: Drewes H, Dodson A, Fortes LPS, Sánchez L, Sandoval P (eds) Vertical Reference Systems. IAG Symposia 124:101–106. doi:10.1007/978-3-662-04683-8_20

  • Lambin J, Morrow R, Fu L-L, Willis JK, Bonekamp H, Lillibridge J, Perbos J, Zaouche G, Vaze P, Bannoura W, Parisot F, Thouvenot E, Coutin-Faye S, Lindstrom E, Mignogno M (2010) The OSTM/Jason-2 mission. Mar Geod 33(Supp 1):4–25. doi:10.1080/01490419.2010.491030

    Article  Google Scholar 

  • Mader GL (1999) GPS antenna calibration at the National Geodetic Survey. GPS Solut 3(1):50–58. doi:10.1007/PL00012780

    Article  Google Scholar 

  • Montenbruck O, Steigenberger P, Khachikyan R, Weber G, Langley RB, Mervart L, Hugentobler U (2014) IGS-MGEX: Preparing the ground for multi-constellation GNSS science. Inside GNSS 9(1):42–49

    Google Scholar 

  • Montenbruck O, Schmid R, Mercier F, Steigenberger P, Noll C, Fatkulin R, Kogure S, Ganeshan AS (2015) GNSS satellite geometry and attitude models. Adv Space Res 56(6):1015–1029. doi:10.1016/j.asr.2015.06.019

    Article  Google Scholar 

  • Ortiz de Galisteo JP, Toledano C, Cachorro V, Torres B (2010) Improvement in PWV estimation from GPS due to the absolute calibration of antenna phase center variations. GPS Solut 14(4):389–395. doi:10.1007/s10291-010-0163-y

    Article  Google Scholar 

  • Prange L, Jäggi A, Dach R, Bock H, Beutler G, Mervart L (2010) AIUB-CHAMP02S: The influence of GNSS model changes on gravity field recovery using spaceborne GPS. Adv Space Res 45(2):215–224. doi:10.1016/j.asr.2009.09.020

    Article  Google Scholar 

  • Ray J (2011) Reminder: switch to IGS08 / igs08.atx on 17 April 2011. IGSMAIL-6384. IGS Central Bureau, Pasadena

  • Rebischung P, Griffiths J, Ray J, Schmid R, Collilieux X, Garayt B (2012) IGS08: the IGS realization of ITRF2008. GPS Solut 16(4):483–494. doi:10.1007/s10291-011-0248-2

    Article  Google Scholar 

  • Rothacher M, Schmid R (2010) ANTEX: the antenna exchange format, version 1.4. IGS Central Bureau, Pasadena. Available at ftp://ftp.igs.org/pub/station/general/antex14.txt

  • Saastamoinen J (1973) Contributions to the theory of atmospheric refraction. Bull Géod 107(1):13–34. doi:10.1007/BF02522083

    Article  Google Scholar 

  • Schaer S, Meindl M (2011) Consideration of station-specific intersystem translation parameters at CODE. In: Proc EUREF Symposium 2011, Chisinau, Moldova. Available at http://www.euref.eu/symposia/2011Chisinau/04-02-p-Schaer.pdf

  • Schmid R, Rothacher M (2003) Estimation of elevation-dependent satellite antenna phase center variations of GPS satellites. J Geod 77(7–8):440–446. doi:10.1007/s00190-003-0339-0

    Article  Google Scholar 

  • Schmid R, Rothacher M, Thaller D, Steigenberger P (2005) Absolute phase center corrections of satellite and receiver antennas: impact on global GPS solutions and estimation of azimuthal phase center variations of the satellite antenna. GPS Solut 9(4):283–293. doi:10.1007/s10291-005-0134-x

    Article  Google Scholar 

  • Schmid R, Steigenberger P, Gendt G, Ge M, Rothacher M (2007) Generation of a consistent absolute phase center correction model for GPS receiver and satellite antennas. J Geod 81(12):781–798. doi:10.1007/s00190-007-0148-y

    Article  Google Scholar 

  • Schmid R, Dilssner F, Collilieux X, Khachikyan R (2010) igs05_1602.atx—update including estimated Block IIF satellite antenna corrections. IGSMAIL-6271, IGS Central Bureau, Pasadena

  • Schmid R (2011) Upcoming switch to IGS08/igs08.atx—details on igs08.atx. IGSMAIL-6355, IGS Central Bureau, Pasadena

  • Schmid R (2014) IGS Antenna Working Group. In: Dach R, Jean Y (eds) IGS Technical Report 2013. IGS Central Bureau, Pasadena, pp 133–136

    Google Scholar 

  • Schmid R (2015) Antenna Working Group Technical Report 2014. In: Jean Y, Dach R (eds) IGS Technical Report 2014, IGS Central Bureau, Pasadena, pp 129–132

  • Schmitz M, Wübbena G, Propp M (2008) Absolute robot-based GNSS antenna calibration—features and findings. Proc Internat Symposium on GNSS. Space-based and Ground-based Augmentation Systems and Applications, Berlin, Germany, pp 52–54

  • Springer TA (2009) NAPEOS – Mathematical models and algorithms. Technical note, DOPS-SYS-TN-0100-OPS-GN. Available at ftp://dgn6.esoc.esa.int/napeos/DOPS-SYS-TN-0100-OPS-GN-MathModels.pdf

  • Springer T, Dilssner F (2009) SVN49 and other GPS anomalies. Inside GNSS 4(4):32–36

    Google Scholar 

  • Steigenberger P, Rothacher M, Schmid R, Rülke A, Fritsche M, Dietrich R, Tesmer V (2009) Effects of different antenna phase center models on GPS-derived reference frames. In: Drewes H (ed) Geodetic Reference Frames, IAG Symposia 134: 83–88. doi:10.1007/978-3-642-00860-3_13

  • Tapley BD, Bettadpur S, Watkins M, Reigber C (2004) The gravity recovery and climate experiment: mission overview and early results. Geophys Res Lett 31(9):L09607. doi:10.1029/2004GL019920

    Article  Google Scholar 

  • Thomas ID, King MA, Clarke PJ, Penna NT (2011) Precipitable water vapor estimates from homogeneously reprocessed GPS data: an intertechnique comparison in Antarctica. J Geophys Res 116:D04107. doi:10.1029/2010JD013889

    Google Scholar 

  • Willis P, Slater J, Beutler G, Gurtner W, Noll C, Weber R, Neilan RE, Hein G (2000) The IGEX-98 campaign: highlights and perspective. In: Schwarz K-P (ed) Geodesy Beyond 2000, IAG Symposia 121:22–25. doi:10.1007/978-3-642-59742-8_4

  • Wu X, Collilieux X, Altamimi Z, Vermeersen BLA, Gross RS, Fukumori I (2011) Accuracy of the International Terrestrial Reference Frame origin and Earth expansion. Geophys Res Lett 38(13):L13304. doi:10.1029/2011GL047450

    Article  Google Scholar 

  • Wübbena G, Schmitz M, Menge F, Böder V, Seeber G (2000) Automated absolute field calibration of GPS antennas in real-time. Proc ION-GPS00. Salt Lake City, UT, pp 2512–2522

  • Wübbena G, Schmitz M, Boettcher G, Schumann C (2008) Absolute GNSS antenna calibration with a robot: repeatability of phase variations, calibration of GLONASS and determination of carrier-to-noise pattern. In: Springer T, Gendt G, Dow JM (eds) Proc IGS 2006 Workshop. Darmstadt, Germany

  • Zeimetz P (2010) Zur Entwicklung und Bewertung der absoluten GNSS-Antennenkalibrierung im HF-Labor. PhD thesis, University of Bonn. Available at http://hss.ulb.uni-bonn.de/2010/2212/2212.pdf

  • Zhu SY, Massmann F-H, Yu Y, Reigber C (2003) Satellite antenna phase center offsets and scale errors in GPS solutions. J Geod 76(11–12):668–672. doi:10.1007/s00190-002-0294-1

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank all the various components of the IGS, especially those ACs providing satellite antenna PCO estimates within their reprocessed SINEX files. We are grateful to Paul Rebischung who computed the final set of individual AC z-PCO time series supplied by IGN as well as the updated z-PCOs provided in Table 6. We also thank Matt King and three anonymous reviewers for their valuable comments on this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Schmid.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schmid, R., Dach, R., Collilieux, X. et al. Absolute IGS antenna phase center model igs08.atx: status and potential improvements. J Geod 90, 343–364 (2016). https://doi.org/10.1007/s00190-015-0876-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00190-015-0876-3

Keywords

Navigation