Skip to main content
Log in

Anti-estrogenic activity of tris(2,3-dibromopropyl) isocyanurate through disruption of co-activator recruitment: experimental and computational studies

  • Molecular Toxicology
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

As a potential endocrine disruptor, tris(2,3-dibromopropyl) isocyanurate (TBC) has previously been demonstrated to reduce expression of estrogen-dependent vitellogenin (vtg) mRNA in adult zebrafish. However, the underlying toxicity pathways and molecular mechanisms involved in TBC-induced endocrine disruption remain elusive. In the current study, E-Screen and MVLN assays were employed to explore the potential anti-estrogenic effects of TBC via the estrogen receptor α (ERα)-mediated signaling pathway. Within a dose range between 1 × 10− 9 and 1 × 10− 7 M, TBC significantly inhibited 17β-estradiol (E2)-induced cell proliferation in a breast cancer cell line. The luciferase activity induced by E2 was also significantly inhibited by TBC in a dose-dependent manner. Moreover, neither TBC nor E2 affected proliferation of the ERα-negative breast cancer cell line MDA-MB-231. These experimental results confirmed that TBC has anti-estrogenic effects by affecting the ERα-mediated signaling pathway. By comparing TBC with known antagonists of ERα, we found that TBC has similar molecular structure as certain co-activator binding inhibitors. Therefore, using molecular docking and molecular dynamics simulations, TBC was further predicted to competitively occupy the surface site of ERα rather than the canonical E2-binding pocket of ERα, thus disrupt subsequent co-activator recruitment and transcription activation. Our findings elucidate the anti-estrogenic mechanism of TBC at the atomic level and highlight the biological importance of surface sites of nuclear receptors for a risk assessment of potential environmental pollutants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Anandakrishnan R, Aguilar B, Onufriev AV (2012) H++ 3.0: automating pK prediction and the preparation of biomolecular structures for atomistic molecular modeling and simulations. Nucleic Acids Res 40(W1):W537-W541

    Article  PubMed Central  Google Scholar 

  • Belorusova AY, Eberhardt J, Potier N, Stote RH, Dejaegere A, Rochel N (2014) Structural insights into the molecular mechanism of vitamin D receptor activation by lithocholic acid involving a new mode of ligand recognition. J Med Chem 57(11):4710–4719

    Article  CAS  PubMed  Google Scholar 

  • Bernardes A, Souza PC, Muniz JR, Ricci CG, Ayers SD, Parekh NM, Godoy AS, Trivella DB, Reinach P, Webb P (2013) Molecular mechanism of peroxisome proliferator-activated receptor α activation by WY14643: a new mode of ligand recognition and receptor stabilization. J Mol Biol 425(16):2878–2893

    Article  CAS  PubMed  Google Scholar 

  • Cao H, Sun Y, Wang L, Zhao C, Fu J, Zhang A (2017a) Understanding the microscopic binding mechanism of hydroxylated and sulfated polybrominated diphenyl ethers with transthyretin by molecular docking, molecular dynamics simulations and binding free energy calculations. Mol BioSyst 13(4):736–749

    Article  CAS  PubMed  Google Scholar 

  • Cao H, Wang F, Liang Y, Wang H, Zhang A, Song M (2017b) Experimental and computational insights on the recognition mechanism between the estrogen receptor α with bisphenol compounds. Arch Toxicol 91(12):3897–3912

    Article  CAS  PubMed  Google Scholar 

  • Cuzzolin A, Sturlese M, Deganutti G, Salmaso V, Sabbadin D, Ciancetta A, Moro S (2016) Deciphering the complexity of ligand–protein recognition pathways using supervised molecular dynamics (SuMD) simulations. J Chem Inf Model 56(4):687–705

    Article  CAS  PubMed  Google Scholar 

  • Darden T, York D, Pedersen L (1993) Particle mesh Ewald: An N⋅log (N) method for Ewald sums in large systems. J Chem Phys 98:10089–10092

    Article  CAS  Google Scholar 

  • Estébanezperpiñá E, Arnold LA, Nguyen P, Rodrigues ED, Mar E, Bateman R, Pallai P, Shokat KM, Baxter JD, Guy RK (2007) A surface on the androgen receptor that allosterically regulates coactivator binding. Proc Natl Acad Sci USA 104(41):16074–16079

    Article  Google Scholar 

  • Freyberger A, Schmuck G (2005) Screening for estrogenicity and anti-estrogenicity: a critical evaluation of an MVLN cell-based transactivation assay. Toxicol Lett 155(1):1–13

    Article  CAS  PubMed  Google Scholar 

  • Hale RC, La Guardia MJ, Harvey E, Gaylor MO, Mainor TM (2006) Brominated flame retardant concentrations and trends in abiotic media. Chemosphere 64(2):181–186

    Article  CAS  PubMed  Google Scholar 

  • Hamers T, Kamstra JH, Sonneveld E, Murk AJ, Kester MHA, Andersson PL, Legler J, Brouwer A (2006) In vitro profiling of the endocrine-disrupting potency of brominated flame retardants. Toxicol Sci 92(1):157–173

    Article  CAS  PubMed  Google Scholar 

  • Han C, Fang S, Cao H, Lu Y, Ma Y, Wei D, Xie X, Liu X, Li X, Fei D (2013) Molecular interaction of PCB153 to human serum albumin: insights from spectroscopic and molecular modeling studies. J Hazard Mater 248:313–321

    Article  PubMed  Google Scholar 

  • Hou T, Wang J, Li Y, Wang W (2010) Assessing the performance of the MM/PBSA and MM/GBSA methods. 1. The accuracy of binding free energy calculations based on molecular dynamics simulations. J Chem Inf Model 51(1):69–82

    Article  PubMed  PubMed Central  Google Scholar 

  • Huang H, Du G, Zhang W, Hu J, Wu D, Song L, Xia Y, Wang X (2014) The in vitro estrogenic activities of triclosan and triclocarban. J Appl Toxicol 34(9):1060–1067

    Article  CAS  PubMed  Google Scholar 

  • Jain AN (2007) Surflex-Dock 2.1: robust performance from ligand energetic modeling, ring flexibility, and knowledge-based search. J Comput Aided Mol Des 21(5):281–306

    Article  CAS  PubMed  Google Scholar 

  • Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79:926–935

    Article  CAS  Google Scholar 

  • Legler J, Brouwer A (2003) Are brominated flame retardants endocrine disruptors? Environ Int 29(6):879–885

    Article  CAS  PubMed  Google Scholar 

  • Li J, Liang Y, Zhang X et al (2011) Impaired gas bladder inflation in zebrafish exposed to a novel heterocyclic brominated flame retardant tris(2,3-dibromopropyl) isocyanurate. Environ Sci Technol 45(22):9750–9757

    Article  CAS  PubMed  Google Scholar 

  • Li H, Leung K-S, Ballester PJ, Wong M-H (2014) istar: A web platform for large-scale protein-ligand docking. Plos One 9(1):e85678

    Article  PubMed  PubMed Central  Google Scholar 

  • Li J, Zhang X, Bao J et al (2015) Toxicity of new emerging pollutant tris-(2,3-dibromopropyl) isocyanurate on BALB/c mice. J Appl Toxicol 35(4):375–382

    Article  CAS  PubMed  Google Scholar 

  • Li X, Pan Y, Wang C, Chen M, Liu Y, Li J, Zhou Z, Xu J, Liang Y, Song M (2016) Effects of tris(2,3-dibromopropyl) isocyanurate on steroidogenesis in H295R cells. Environ Earth Sci 75(20):1339

    Article  Google Scholar 

  • Liu Q, Sun Y, Qu G, Long Y, Zhao X, Zhang A, Zhou Q, Hu L, Jiang G (2017) Structure-dependent hematological effects of per- and polyfluoroalkyl substances on activation of plasma kallikrein–kinin system cascade. Environ Sci Technol 51(17):10173–10183

    Article  CAS  PubMed  Google Scholar 

  • Maier JA, Martinez C, Kasavajhala K, Wickstrom L, Hauser KE, Simmerling C (2015) ff14SB: improving the accuracy of protein side chain and backbone parameters from ff99SB. J Chem Theory Comput 11(8):3696–3713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miller IIIBR., McGee TD Jr, Swails JM, Homeyer N, Gohlke H, Roitberg AE (2012) MMPBSA. py: an efficient program for end-state free energy calculations. J Chem Theory Comput 8(9):3314–3321

    Article  CAS  PubMed  Google Scholar 

  • Minerva MF, Bigsby RM (2008) Hydroxylated metabolites of the polybrominated diphenyl ether mixture DE-71 are weak estrogen receptor-α ligands. Environ Health Perspect 116(10):1315–1321

    Article  Google Scholar 

  • Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson AJ (2009) AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem 30(16):2785–2791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Onufriev A, Bashford D, Case DA (2004) Exploring protein native states and large-scale conformational changes with a modified generalized born model. Proteins Struct Funct Bioinf 55(2):383–394

    Article  CAS  Google Scholar 

  • Parent AA, Gunther JR, Katzenellenbogen JA (2008) Blocking estrogen signaling after the hormone: pyrimidine-core inhibitors of estrogen receptor-coactivator binding. J Med Chem 51(20):6512–6530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pendse SN, Maertens A, Rosenberg M, Roy D, Fasani RA, Vantangoli MM, Madnick SJ, Boekelheide K, Fornace AJ, Odwin SA (2017) Information-dependent enrichment analysis reveals time-dependent transcriptional regulation of the estrogen pathway of toxicity. Arch Toxicol 91(4):1749–1762

    Article  CAS  PubMed  Google Scholar 

  • Qu GB, Shi JB, Li ZN, Ruan T, Fu JJ, Wang P, Wang T, Jiang GB (2011) Detection of tris-(2, 3-dibromopropyl) isocyanurate as a neuronal toxicant in environmental samples using neuronal toxicity-directed analysis. Sci China Chem 54(10):1651–1658

    Article  CAS  Google Scholar 

  • Reistad T, Fonnum F, Mariussen E (2006) Neurotoxicity of the pentabrominated diphenyl ether mixture, DE-71, and hexabromocyclododecane (HBCD) in rat cerebellar granule cells in vitro. Arch Toxicol 80(11):785–796

    Article  CAS  PubMed  Google Scholar 

  • Ren XM, Zhang YF, Guo LH, Qin ZF, Lv QY, Zhang LY (2015) Structure-activity relations in binding of perfluoroalkyl compounds to human thyroid hormone T3 receptor. Arch Toxicol 89(2):233–242

    Article  CAS  PubMed  Google Scholar 

  • Roe DR, Cheatham TE III (2013) Ptraj and cpptraj: software for processing and analysis of molecular dynamics trajectory data. J Chem Theory Comput 9(7):3084–3095

    Article  CAS  PubMed  Google Scholar 

  • Romkes M, Piskorska-Pliszczynska J, Safe S (1987) Effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin on hepatic and uterine estrogen receptor levels in rats. Toxicol Appl Pharmacol 87(2):306–314

    Article  CAS  PubMed  Google Scholar 

  • Ruan T, Wang Y, Wang C, Wang P, Fu J, Yin Y, Qu G, Wang T, Jiang G (2009) Identification and evaluation of a novel heterocyclic brominated flame retardant tris(2,3-dibromopropyl) isocyanurate in environmental matrices near a manufacturing plant in southern China. Environ Sci Technol 43(9):3080–3086

    Article  CAS  PubMed  Google Scholar 

  • Ryckaert J-P, Ciccotti G, Berendsen HJ (1977) Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J Comput Phys 23(3):327–341

    Article  CAS  Google Scholar 

  • Scheepstra M, Leysen S, Almen GCV, Miller JR, Piesvaux J, Kutilek V, Eenennaam HV, Zhang H, Barr K, Nagpal S (2015) Identification of an allosteric binding site for RORγt inhibition. Nat Commun 6(5):8833

    Article  PubMed  PubMed Central  Google Scholar 

  • Schultz DJ, Wickramasinghe NS, Ivanova MM, Isaacs SM, Dougherty SM, Imbertfernandez Y, Cunningham AR, Chen C, Klinge CM (2010) Anacardic acid inhibits estrogen receptor alpha-DNA binding and reduces target gene transcription and breast cancer cell proliferation. Mol Cancer Ther 9(3):594–605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shao J, Tanner SW, Thompson N, CheathamTE (2007) Clustering molecular dynamics trajectories: 1. characterizing the performance of different clustering algorithms. J Chem Theory Comput 3(6):2312–2334

    Article  CAS  PubMed  Google Scholar 

  • Sheng N, Li J, Liu H, Zhang A, Dai J (2016) Interaction of perfluoroalkyl acids with human liver fatty acid-binding protein. Arch Toxicol 90(1):217–227

    Article  CAS  PubMed  Google Scholar 

  • Shiau AK, Barstad D, Loria PM, Cheng L, Kushner PJ, Agard DA, Greene GL (1998) The structural basis of estrogen receptor/coactivator recognition and the antagonism of this interaction by tamoxifen. Cell 95(7):927–937

    Article  CAS  PubMed  Google Scholar 

  • Song M, Liang D, Liang Y, Chen M, Wang F, Wang H, Jiang G (2014) Assessing developmental toxicity and estrogenic activity of halogenated bisphenol A on zebrafish (Danio rerio). Chemosphere 112(1):275–281

    Article  CAS  PubMed  Google Scholar 

  • Soto AM, Sonnenschein C, Chung KL, Fernandez MF, Olea N, Serrano FO (1995) The E-SCREEN assay as a tool to identify estrogens: an update on estrogenic environmental pollutants. Enviro Health Perspect 103(Suppl 7):113–122

    Article  CAS  Google Scholar 

  • Souza PC, Puhl AC, Martínez L, Aparício R, Nascimento AS, Figueira AC, Nguyen P, Webb P, Skaf MS, Polikarpov I (2014) Identification of a new hormone-binding site on the surface of thyroid hormone receptor. Mol Endocrinol 28(4):534–545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trott O, Olson AJ (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 31(2):455–461

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang J, Wolf RM, Caldwell JW, Kollman PA, Case DA (2004) Development and testing of a general amber force field. J Comput Chem 25(9):1157–1174

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Chirgadze NY, Briggs SL, Khan S, Jensen EV, Burris TP (2006) A second binding site for hydroxytamoxifen within the coactivator-binding groove of estrogen receptor β. Proc Natl Acad Sci USA 103(26):9908–9911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang C, Wang T, Liu W, Ruan T, Zhou Q, Liu J, Zhang A, Zhao B, Jiang G (2012) The in vitro estrogenic activities of polyfluorinated iodine alkanes. Enviro Health Perspect 120(1):119–125

    Article  CAS  Google Scholar 

  • Wang T, Han S, Ruan T, Wang Y, Feng J, Jiang G (2013) Spatial distribution and inter-year variation of hexabromocyclododecane (HBCD) and tris-(2,3-dibromopropyl) isocyanurate (TBC) in farm soils at a peri-urban region. Chemosphere 90(2):182–187

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Zhao Q, Zhao Y, Lou Y, Zheng M, Yu Y, Zhang M (2016) Determination of heterocyclic brominated flame retardants tris-(2, 3-dibromopropyl) isocyanurate and hexabromocyclododecane in sediment from Jiaozhou Bay wetland. Mar Pollut Bull 2016 113(1):509–512

    Article  CAS  PubMed  Google Scholar 

  • Wärnmark A, Treuter E, Gustafsson JA, Hubbard RE, Brzozowski AM, Pike AC (2002) Interaction of transcriptional intermediary factor 2 nuclear receptor box peptides with the coactivator binding site of estrogen receptor alpha. J Biol Chem 277(24):21862–21868

    Article  PubMed  Google Scholar 

  • Weiser J, Shenkin PS, Still WC (1999) Approximate atomic surfaces from linear combinations of pairwise overlaps (LCPO). J Comput Chem 20(2):217–230

    Article  CAS  Google Scholar 

  • Xu J, Li Q (2003) Review of the in vivo functions of the p160 steroid receptor coactivator family. Mol Endocrinol 17(9):1681–1692

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Lv QY, Guo LH, Wan B, Ren XM, Shi YL, Cai YQ (2017) Identification of protein tyrosine phosphatase SHP-2 as a new target of perfluoroalkyl acids in HepG2 cells. Arch Toxicol 91(4):1697–1707

    Article  CAS  PubMed  Google Scholar 

  • Ye L, Hu Z, Wang H, Zhu H, Dong Z, Jiang W, Zhao H, Li N, Mi W, Wang W, Hu X (2015) Tris-(2,3-Dibromopropyl) isocyanurate, a new emerging pollutant, impairs cognition and provokes depression-like behaviors in adult rats. Plos One 10(10):e0140281

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang X, Li J, Chen MJ, Wu L, Zhang C, Zhang J, Zhou QF, Liang Y (2011) Toxicity of the brominated flame retardant tris-(2,3-dibromopropyl) isocyanurate in zebrafish (Danio rerio). Chin Sci Bull 56(15):1548–1555

    Article  CAS  Google Scholar 

  • Zhu N, Li A, Wang T, Wang P, Qu G, Ruan T, Fu J, Yuan B, Zeng L (2012) Tris(2,3-dibromopropyl) isocyanurate, hexabromocyclododecanes, and polybrominated diphenyl ethers in mollusks from Chinese Bohai Sea. Environ Sci Technol 46(13):7174–7181

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB14030501), the National Nature Science Foundation of China (21277062, 21477049) and the Natural Science Foundation of Hubei Province (2017CFB368).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yong Liang or Maoyong Song.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 3788 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, H., Li, X., Zhang, W. et al. Anti-estrogenic activity of tris(2,3-dibromopropyl) isocyanurate through disruption of co-activator recruitment: experimental and computational studies. Arch Toxicol 92, 1471–1482 (2018). https://doi.org/10.1007/s00204-018-2159-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-018-2159-2

Keywords

Navigation