Skip to main content
Log in

A Gradient Flow Approach to the Porous Medium Equation with Fractional Pressure

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

We consider a family of porous media equations with fractional pressure, recently studied by Caffarelli and Vázquez. We show the construction of a weak solution as the Wasserstein gradient flow of a square fractional Sobolev norm. The energy dissipation inequality, regularizing effect and decay estimates for the L p norms are established. Moreover, we show that a classical porous medium equation can be obtained as a limit case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams, D.R., Hedberg, L.I.: Function spaces and potential theory. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 314. Springer-Verlag, Berlin, 1996

  2. Ambrosio, L., Gigli, N., Savaré, G.: Gradient flows in metric spaces and in the space of probability measures. Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, 2005

  3. Ambrosio L., Mainini E., Serfaty S.: Gradient flow of the Chapman–Rubinstein–Schatzman model for signed vortices. Ann. Inst. H. Poincaré Anal. Non Linèaire 28(2), 217–246 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Ambrosio L., Serfaty S.: A gradient flow approach to an evolution problem arising in superconductivity. Commun. Pure Appl. Math. 61(11), 1495–1539 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bahouri, H., Chemin, J.Y., Danchin, R.: Fourier analysis and nonlinear partial differential equations. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 343. Springer, Heidelberg, 2011

  6. Biler P., Imbert C., Karch G.: The nonlocal porous medium equation: Barenblatt profiles and other weak solutions. Arch. Ration. Mech. Anal. 215, 497–529 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  7. Blanchet A.: A gradient flow approach to the Keller–Segel systems. RIMS Kokyuroku’s lecture note 1837, 52–73 (2013)

    Google Scholar 

  8. Blanchet, A.: On the parabolic-elliptic Patlak–Keller–Segel system in dimension 2 and higher. Séminaire équations aux dérivées partielles (8), (2011–2012)

  9. Blanchet A., Calvez V., Carrillo J.A.: Convergence of the mass-transport steepest descent scheme for the sub-critical Patlak–Keller–Segel model. SIAM J. Numer. Anal. 46(2), 691–721 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bonforte, M., Grillo, G.: Asymptotics of the porous media equation via Sobolev inequalities. J. Funct. Anal. 225(1), 33–62 (2005)

  11. Caffarelli L., Soria F., Vázquez J.L.: Regularity of solutions of the fractional porous medium flow. J. Eur. Math. Soc. (JEMS) 15, 1701–1746 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  12. Caffarelli L., Vasseur A.: Drift diffusion equations with fractional diffusion and the quasi-geostrophic equation. Ann. Math. (2) 171(3), 1903–1930 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  13. Caffarelli L., Vasseur A.: The De Giorgi method for regularity of solutions of elliptic equations and its applications to fluid dynamics. Discrete Contin. Dyn. Syst. Ser. S. 3(3), 409–427 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  14. Caffarelli L., Vázquez J.L.: Nonlinear porous medium flow with fractional potential pressure. Arch. Ration. Mech. Anal. 202, 537–565 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  15. Caffarelli L., Vázquez J.L.: Asymptotic behaviour of a porous medium equation with fractional diffusion. Discrete Contin. Dyn. Syst. 29(4), 1393–1404 (2011)

    MathSciNet  MATH  Google Scholar 

  16. Caffarelli L., Vázquez J.L.: Regularity of solutions of the fractional porous medium flow with exponent 1/2. St. Petersb. Math. J. 27, 437–460 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  17. Chapman S.J., Rubinstein J., Schatzman M.: A mean-field model of superconducting vortices. Eur. J. Appl. Math. 7, 97–111 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  18. Carrillo J.A., Huang Y., Santos M.C., Vázquez J.L.: Exponential convergence towards stationary states for the 1D porous medium equation with fractional pressure. J. Differ. Equ. 258, 736–763 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Cotsiolis A., Tavoularis N.K.: Best constants for Sobolev inequalities for higher order fractional derivatives. J. Math. Anal. Appl. 295, 225–236 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  20. E W.: Dynamics of vortices in Ginzburg–Landau theories with applications to superconductivity. Phys. D. 77, 383–404 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  21. Imbert C.: Finite speed of propagation for a non-local porous medium equation. Colloq. Math. 143(2), 149–157 (2016)

    MathSciNet  MATH  Google Scholar 

  22. Jordan R., Kinderlehrer D., Otto F.: The variational formulation of the Fokker–Planck equation. SIAM J. Math. Anal. 29, 1–17 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  23. Lin F., Zhang P.: On the hydrodynamic limit of Ginzburg–Landau vortices. Discrete Contin. Dynam. Syst. 6, 121–142 (2000)

    MathSciNet  MATH  Google Scholar 

  24. Matthes D., McCann R.J., Savaré G.: A family of nonlinear fourth order equations of gradient flow type. Commun. Partial Differ. Equ. 34, 1352–1397 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  25. McCann R.J.: A convexity principle for interacting gases. Adv. Math. 128, 153–179 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  26. Nochetto R.H., Savaré G., Verdi C.: A posteriori error estimates for variable time-step discretizations of nonlinear evolution equations. Commun. Pure Appl. Math. 53(5), 525–589 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  27. Serfaty, S., Vázquez, J.L.: A mean field equation as limit of nonlinear diffusions with fractional Laplacian operators. Calc. Var. Partial Differ. Equ. 49(3-4), 1091–1120 (2014)

  28. Stan, D., del Teso, F., Vázquez J.L.: Existence of weak solutions for a general porous medium equation with nonlocal pressure. arXiv:1609.05139

  29. Stan, D., del Teso, F., Vázquez, J.L.: Finite and infinite speed of propagation for porous medium equations with nonlocal pressure. J. Differ. Equ. 260(2), 1154–1199 (2016)

  30. Stan, D., del Teso, F., Vázquez, J.L.: Transformations of self-similar solutions for porous medium equations of fractional type. Nonlinear Anal. 119, 62–73 (2015)

  31. Vázquez, J.L.: The porous medium equation. Mathematical theory. Oxford University Press, Oxford, 2007

  32. Vázquez, J.L.: The mathematical theories of diffusion. Nonlinear and fractional diffusion. In: Nonlocal and Nonlinear diffusions and interactions: new methods and directions, Springer LectureNotes in Mathematics, vol. 2186, C.I.M.E. Foundation subseries, 2017

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefano Lisini.

Additional information

Communicated by A. Figalli

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lisini, S., Mainini, E. & Segatti, A. A Gradient Flow Approach to the Porous Medium Equation with Fractional Pressure. Arch Rational Mech Anal 227, 567–606 (2018). https://doi.org/10.1007/s00205-017-1168-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-017-1168-2

Navigation