Skip to main content
Log in

Variations on inversion theorems for Newton–Puiseux series

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

Let f(xy) be an irreducible formal power series without constant term, over an algebraically closed field of characteristic zero. One may solve the equation \(f(x,y)=0\) by choosing either x or y as independent variable, getting two finite sets of Newton–Puiseux series. In 1967 and 1968 respectively, Abhyankar and Zariski published proofs of an inversion theorem, expressing the characteristic exponents of one set of series in terms of those of the other set. In fact, a more general theorem, stated by Halphen in 1876 and proved by Stolz in 1879, relates also the coefficients of the characteristic terms of both sets of series. This theorem seems to have been completely forgotten. We give two new proofs of it and we generalize it to a theorem concerning irreducible series with an arbitrary number of variables.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abhyankar, S.S.: On the ramification of algebraic functions. Am. J. Math. 77, 575–592 (1955)

    Article  MathSciNet  MATH  Google Scholar 

  2. Abhyankar, S.S.: Inversion and invariance of characteristic pairs. Am. J. Math. 89, 363–372 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  3. Abhyankar, S.S.: Inversion and invariance of characteristic terms: Part I. In: The legacy of Alladi Ramakrishnan in the mathematical sciences. pp. 93–168, Springer, New York (2010)

  4. Borodzik, M.: Puiseux expansion of a cuspidal singularity. Bul. Polish Acad. Sci. 60, 21–25 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  5. Campillo, A.: On saturations of curve singularities (any characteristic). Singularities, Part 1 (Arcata, Calif., 1981), vol. 40, pp. 211–220, Proc. Sympos. Pure Math., Amer. Math. Soc., Providence, RI (1983)

  6. Campillo, A.: Arithmetical aspects of saturation of singularities. Singularities (Warsaw, 1985), vol. 20, pp. 121–137, Banach Center Publ. PWN, Warsaw (1988)

  7. Casas-Alvero, E. Singularities of plane curves. London Mathematical Society Lecture Note Series, vol. 276. Cambridge University Press, Cambridge (2000)

  8. Cox, D., Little, J., O’Shea, D.: Ideals, varieties, and algorithms. 3rd edn. Springer (2007)

  9. Cutkosky, S.D. Resolution of singularities. Graduate Studies in Maths, vol. 63. American Math. Society (2004)

  10. de Jong, T., Pfister, G.: Local analytic geometry. Adv. Lect. Math. Friedr. Vieweg and Sohn (2000)

  11. Enriques, F., Chisini, O.: Lezioni sulla teoria geometrica delle equazioni e delle funzioni algebriche II. Zanichelli, Bologna (1917)

    MATH  Google Scholar 

  12. Ewald, G., Ishida, M-N.: Completion of real fans and Zariski-Riemann spaces, Tohôku Math. J., (2) 58, 189–218 (2006)

  13. Fischer, G.: Plane algebraic curves. Student Mathematical Library, vol. 15. American Mathematical Society (2001)

  14. Gau, Y.-N.: Embedded topological classification of quasi-ordinary singularities. Memoirs Am. Math. Soc. 388, 109–129 (1988)

  15. Goldin, R., Teissier, B.: Resolving singularities of plane analytic branches with one toric morphism. Resolution of singularities (Obergurgl, 1997), vol. 181, pp. 315–340. Progr. Math. Birkhuser, Basel (2000)

  16. González Pérez, P.D.: Singularités quasi-ordinaires toriques et polyèdre de Newton du discriminant. Can. J. Math. 52(2), 348–368 (2000)

  17. González Pérez, P.D.: The semigroup of a quasi-ordinary hypersurface. J. Inst. Math. Jussieu 2(3), 383–399 (2003)

  18. González Pérez, P.D., Teissier, B.: Toric geometry and the Semple-Nash modification. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Math. 08(1), 1–48 (2014)

  19. Griffiths, P.: Variations on a theorem of Abel. Inv. Math. 35, 321–390 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  20. Halphen, G.: Sur une série de courbes analogues aux développées. Journal de maths. pures et appliquées (de Liouville) 3e série, tome 2, 87–144 (1876)

  21. Halphen, G.: Étude sur les points singuliers des courbes algébriques planes. Appendix to G. Salmon’s book Traité de géométrie analytique (courbes planes), pp. 537–648. Gauthier-Villars, Paris (1884)

  22. Jung, H.W.E.: Darstellung der Funktionen eines algebraischen Körpers zweier unabhängigen Veränderlichen \(x\),\(y\) in der Umgebung einer stelle \(x =a\), \(y=b\). J. Reine Angew. Math. 133, 289–314 (1908)

    MathSciNet  MATH  Google Scholar 

  23. Lagrange, J.-L.: Nouvelle méthode pour résoudre les équations littérales par le moyen des séries. Mémoires de l’Académie Royale des Sciences et Belles-Lettres de Berlin 24, 251–326 (1770)

  24. Lipman, J.: Quasi-ordinary singularities of embedded surfaces. PhD Thesis, Harvard Univ. (1965). https://www.math.purdue.edu/~lipman/papers-older/

  25. Lipman, J.: Relative Lipschitz-saturation. Am. J. Math. 97(3), 791–813 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  26. Lipman, J.: Quasi-ordinary singularities of surfaces in \({\mathbb{C}}^{3}\). Proc. Symp. Pure Math. 40, 161–172 , Part 2 (1983)

  27. Lipman, J.: Topological invariants of quasi-ordinary singularities. Mem. Am. Math. Soc. 74(388), 1–107 (1988)

    MathSciNet  MATH  Google Scholar 

  28. Lipman, J.: Appendix to Gau, Y.-N. Embedded topological classification of quasi-ordinary Singularities. Mem. Am. Math.Soc. 388, 109–129 (1988)

  29. Newton, I.: The method of fluxions and infinite series. Printed by H. Woodfall and sold by J. Nourse, London, 1736. Translated into french by M. Buffon, Debure libraire, 1740: La méthode des fluxions et des suites infinies

  30. Pham P., Teissier B.: Saturation Lipschitzienne d’une algèbre analytique complexe et saturation de Zariski. Prépublication École Polytechnique 1969. http://hal.archives-ouvertes.fr/hal-00384928/fr/

  31. Popescu-Pampu, P.: Approximate roots. In: Kuhlmann, F.V. et al. (eds.) Valuation theory and its applications. Fields Inst. Communications, vol. 33, pp. 285–321. AMS (2003)

  32. Puiseux, V.: Recherches sur les fonctions algébriques. Journal de maths. pures et appliquées (de Liouville) 15, 365–480 (1850)

    Google Scholar 

  33. Robbiano, L.: On the theory of graded structures. J. Symb. Comput. 2(2), 139–170 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  34. Smith, H.J.S.: On the higher singularities of plane curves. Proc. Lond. Math. Soc. 6, 153–182 (1874)

    Article  MathSciNet  MATH  Google Scholar 

  35. Stanley, R.: Enumerative combinatorics II. Cambridge Univ. Press, Cambridge (1999)

    Book  MATH  Google Scholar 

  36. Stolz, O.: Die Multiplicität der Schnittpunkte zweier algebraischer Curven. Math. Annalen 15, 122–160 (1879)

    Article  MathSciNet  MATH  Google Scholar 

  37. Tornero, J.M.: On Kummer extensions of the power series field. Math. Nachr. 281(10), 1511–1519 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  38. Wall, C.T.C.: Singular points of plane curves. London Math. Society Student Texts, vol. 63. Cambridge Univ. Press, Cambridge (2004)

  39. Zariski, O.: Algebraic surfaces. Springer-Verlag, 1935. A second supplemented edition appeared in 1971

  40. Zariski, O.: Studies in equisingularity III. Saturation of local rings and equisingularity. Am. J. Math. 90, 961–1023 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  41. Zariski, O.: Le problème des modules pour les branches planes. Avec un appendice de Bernard Teissier. Deuxième édition, Hermann, Paris, 1986. An English translation by Ben Lichtin was published in 2006 by the AMS with the title The moduli problem for plane branches

Download references

Acknowledgements

This research was partially supported by the French grants ANR-12-JS01-0002-01 SUSI, Labex CEMPI ANR-11-LABX-0007-01 and the Spanish grants MTM2012-36917-C03-0, MTM2013-45710-C2-2-P, MTM2016-76868-C2-1-P, MTM2016-80659-P. We are grateful to Herwig Hauser and Hana Kováčová for their translation of parts of Stolz’ paper. The third-named author is grateful to Mickaël Matusinski for the opportunity to explain our first proof of the Halphen–Stolz theorem at the Geometry seminar of the University of Bordeaux. We thank him and the anonymous referee for their remarks on a previous version of this article, which allowed us to improve our presentation. We also thank Antonio Campillo for the information he sent us about the uses of Abhyankar–Zariski inversion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick Popescu-Pampu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

García Barroso, E.R., González Pérez, P.D. & Popescu-Pampu, P. Variations on inversion theorems for Newton–Puiseux series. Math. Ann. 368, 1359–1397 (2017). https://doi.org/10.1007/s00208-016-1503-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-016-1503-1

Keywords

Mathematics Subject Classification

Navigation