Skip to main content
Log in

Cdh descent, cdarc descent, and Milnor excision

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

We give necessary and sufficient conditions for a cdh sheaf to satisfy Milnor excision, following ideas of Bhatt and Mathew. Along the way, we show that the cdh \(\infty \)-topos of a quasi-compact quasi-separated scheme of finite valuative dimension is hypercomplete, extending a theorem of Voevodsky to nonnoetherian schemes. As an application, we show that if E is a motivic spectrum over a field k which is n-torsion for some n invertible in k, then the cohomology theory on k-schemes defined by E satisfies Milnor excision.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. The condition (G1) (resp. (G2)) asks that the horizontal (resp. vertical) morphisms in the square of Theorem A be injective (resp. surjective).

  2. By a cofiltered limit of schemes, we will always mean the limit of a cofiltered diagram of schemes with affine transition morphisms.

  3. By a blowup we will always mean a blowup with finitely presented center, so that blowups are proper.

  4. However, if X is integral, then V need not be locally integral (unless X is geometrically unibranch). This is the reason for considering quasi-integral schemes.

  5. More precisely, Rydh defines universally subtrusive morphisms, which are not necessarily qcqs. A v cover is thus a qcqs universally subtrusive morphism.

  6. This statement only requires \(\mathcal {C} \) to be generated under colimits by cotruncated objects.

References

  1. Ananyevskiy, A., Druzhinin, A.: Rigidity for linear framed presheaves and generalized motivic cohomology theories. Adv. Math. 333, 423–462 (2018). https://doi.org/10.1016/j.aim.2018.05.013

    Article  MathSciNet  MATH  Google Scholar 

  2. Asok, A., Hoyois, M., Wendt, M.: Affine representability results in \({{\mathbb{A}}}^1\)-homotopy theory I: vector bundles . Duke Math. J. (2016). arXiv:1506.07093

  3. Bachmann, T., Hoyois, M.: Norms in motivic homotopy theory (2018). arXiv:1711.03061

  4. Bhatt, B., Mathew, A.: The arc topology. (2020). arXiv:1807.04725

  5. Bourbaki, N.: Éléments de Mathématique, Algèbre Commutative, vol. 7. Springer, Berlin (1975)

    MATH  Google Scholar 

  6. Bhatt, B., Scholze, P.: Projectivity of the Witt vector affine Grassmannian. Invent. Math. 209(2), 329–423 (2017). https://doi.org/10.1007/s00222-016-0710-4

    Article  MathSciNet  MATH  Google Scholar 

  7. Cisinski, D.-C., Déglise, F.: Integral mixed motives in equal characteristic, Doc. Math., Extra Volume: Alexander S. Merkurjev’s Sixtieth Birthday pp. 145–194 (2015)

  8. Clausen, D., Mathew, A.: Hyperdescent and étale K-theory. (2019). arXiv:1905.06611

  9. Elmanto, E., Hoyois, M., Iwasa, R., Kelly, S.: Milnor excision for motivic spectra (in preparation) (2020)

  10. Elmanto, E., Khan, A.A.: Perfection in motivic homotopy theory. Proc. Lond. Math. Soc. 120, 28–38 (2019). preprint arXiv:1812.07506

    Article  MathSciNet  Google Scholar 

  11. Ferrand, D.: Conducteur, descente et pincement. Bull. Soc. Math. France 131(4), 553–585 (2003)

    Article  MathSciNet  Google Scholar 

  12. Grothendieck, A., Dieudonné, J.A.: Éléments de Géométrie Algébrique I. Springer, Berlin (1971)

    MATH  Google Scholar 

  13. Gabber, O., Kelly, S.: Points in algebraic geometry. J. Pure Appl. Algebra 219(10), 4667–4680 (2015)

    Article  MathSciNet  Google Scholar 

  14. Goodwillie, T.G., Lichtenbaum, S.: A cohomological bound for the \(h\)-topology. Am. J. Math. 123(3), 425–443 (2001). http://muse.jhu.edu/journals/american_journal_of_mathematics/v123/123.3goodwillie.pdf

  15. Gruson, L., Raynaud, M.: Critères de platitude et de projectivité. Invent. Math. 13(1–2), 1–89 (1971)

    MathSciNet  MATH  Google Scholar 

  16. Henriksen, M., Jerison, M.: The space of minimal prime ideals of a commutative ring. Trans. Am. Math. Soc. 115, 110–130 (1965)

    Article  MathSciNet  Google Scholar 

  17. Huber, A., Kelly, S.: Differential forms in positive characteristic, II: cdh-descent via functorial Riemann-Zariski spaces. Algebra Number Theory 12(3), 649–692 (2018). https://doi.org/10.2140/ant.2018.12.649

    Article  MathSciNet  MATH  Google Scholar 

  18. Hoyois, M.: A quadratic refinement of the Grothendieck–Lefschetz–Verdier trace formula. Algebr. Geom. Topol. 14(6), 3603–3658 (2014)

    Article  MathSciNet  Google Scholar 

  19. Hoyois, M.: The six operations in equivariant motivic homotopy theory. Adv. Math. 305, 197–279 (2017)

    Article  MathSciNet  Google Scholar 

  20. Jaffard, P.: Théorie de la dimension dans les anneaux de polynômes. Mém. Sci. Math 146, 20 (1960)

    MATH  Google Scholar 

  21. Kelly, S.: A better comparison of cdh- and ldh-cohomologies. Nagoya Math. J. 236, 183–213 (2019). arXiv:1807.00158 (preprint)

  22. Kelly, S., Morrow, M.: \(K\)-theory of valuation rings (2018). arXiv:1810.12203v1

  23. Land, M., Tamme, G.: On the K-theory of pullbacks. Ann. Math. 190(3), 877–930 (2019). preprint arXiv:1808.05559

    Article  MathSciNet  Google Scholar 

  24. Lurie, J.: On Infinity Topoi (2003). arXiv:math/0306109v2

  25. Lurie, J.: Higher Topos Theory (2017). http://www.math.harvard.edu/~lurie/papers/HTT.pdf

  26. Lurie, J.: Spectral Algebraic Geometry (2018). http://www.math.harvard.edu/~lurie/papers/SAG-rootfile.pdf

  27. Milnor, J.W., Husemoller, D.: Symmetric Bilinear Forms, vol. 60. Springer, Berlin (1973)

    Book  Google Scholar 

  28. Milnor, J.: Introduction to algebraic \(K\)-theory. Ann. Math. Stud. 72, xiii+184

  29. Morrow, M.: Pro unitality and pro excision in algebraic K-theory and cyclic homology. J. Reine Angew. Math. 736, 95–139 (2018)

    Article  MathSciNet  Google Scholar 

  30. Nagata, M.: On the theory of Henselian rings. Nagoya Math. J. 5, 45–57 (1953). http://projecteuclid.org/euclid.nmj/1118799392

  31. Rydh, D.: Submersions and effective descent of étale morphisms. Bull. Soc. Math. France 138(2), 181–230 (2010). preprint arXiv:0710.2488

    Article  MathSciNet  Google Scholar 

  32. The Stacks Project Authors, The Stacks Project (2019). http://stacks.math.columbia.edu

  33. Suslin, A.: Motivic complexes over nonperfect fields. Ann. K-Theory 2(2), 277–302 (2017)

    Article  MathSciNet  Google Scholar 

  34. Suslin, A., Voevodsky, V.: Relative cycles and chow sheaves, cycles, transfers, and motivic homology theories. Ann. Math. Stud. 143, 10–86 (2000)

    MATH  Google Scholar 

  35. Temkin, M.: Stable modification of relative curves. J. Algebr. Geom. 19, 603–677 (2010)

    Article  MathSciNet  Google Scholar 

  36. Temkin, M.: Relative Riemann–Zariski spaces. Israel J. Math. 185, 1–42 (2011). https://doi.org/10.1007/s11856-011-0099-0

    Article  MathSciNet  MATH  Google Scholar 

  37. Temkin, M.: Inseparable local uniformization. J. Algebra 373, 65–119 (2013). https://doi.org/10.1016/j.jalgebra.2012.09.023

    Article  MathSciNet  MATH  Google Scholar 

  38. Voevodsky, V.: Homology of schemes. Sel. Math. (N.S.) 2(1), 111–153 (1996). preprint K-theory:0031

    Article  MathSciNet  Google Scholar 

  39. Voevodsky, V.: Homotopy theory of simplicial sheaves in completely decomposable topologies. J. Pure Appl. Algebra 214(8), 1384–1398 (2010). https://doi.org/10.1016/j.jpaa.2009.11.004

    Article  MathSciNet  MATH  Google Scholar 

  40. Voevodsky, V.: Unstable motivic homotopy categories in Nisnevich and cdh-topologies. J. Pure Appl. Algebra 214(8), 1399–1406 (2010). https://doi.org/10.1016/j.jpaa.2009.11.005

    Article  MathSciNet  MATH  Google Scholar 

  41. Voevodsky, V.: On motivic cohomology with \(\mathbb{Z}/l\)-coefficients. Ann. Math. 174(1), 401–438 (2011). preprint arXiv:0805.4430

    Article  MathSciNet  Google Scholar 

  42. Weibel, C.A.: Homotopy algebraic \(K\)-theory, algebraic K-theory and number theory. Contemp. Math. 83, 461–488 (1989)

    Article  Google Scholar 

  43. Zariski, O.: Local uniformization on algebraic varieties. Ann. Math. 41(4), 852–896 (1940)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We would like to thank Akhil Mathew and Bhargav Bhatt for some useful discussions about the results of [4] and Benjamin Antieau for communicating Theorem 3.4.5.

This work was partially supported by the National Science Foundation under grant DMS-1440140, while the first two authors were in residence at the Mathematical Sciences Research Institute in Berkeley, California, during the “Derived Algebraic Geometry” program in spring 2019.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elden Elmanto.

Additional information

Communicated by Vasudevan Srinivas.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elmanto, E., Hoyois, M., Iwasa, R. et al. Cdh descent, cdarc descent, and Milnor excision. Math. Ann. 379, 1011–1045 (2021). https://doi.org/10.1007/s00208-020-02083-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-020-02083-5

Navigation