Skip to main content
Log in

Plemelj projections in discrete quaternionic analysis

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

The discrete quaternionic analysis has been placed recently in the same framework as its continuous counterpart. To discover more similarities, we study the solvability of the Dirichlet problem for discrete Cauchy–Fueter system. A serious difficulty arises due to the absence of the notion of the non-tangential limit on lattices. To overcome it, we introduce the two layered structure of discrete boundaries. It turns out that the restriction of the discrete Cauchy–Bitsadze integral on the inner layer of the discrete boundary plays the same role as the non-tangential limit of its continuous counterpart from the inside of the domain, and the analogous result holds true for the outer layer. Moreover, the discrete Sokhotski–Plemelj formula is established over an arbitrary bounded boundary. This allows us to give a criterion for the solvability of the Dirichlet problem via discrete Plemelj projections. More remarkably, we can show that the scaling limits of discrete Plemelj projections are the continuous ones. Our crucial tool is the asymptotic expansion of the fundamental solution of the discrete Cauchy–Fueter operator, instead of the classical method by V. Thomée.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alpay, D. (ed.): Operator Theory. Springer, Basel (2015)

  2. Bernstein, S.: On the left linear Riemann problem in Clifford analysis. Bull. Belg. Math. Soc. 3, 557–576 (1996)

    MathSciNet  MATH  Google Scholar 

  3. Brackx, F., De Schepper, H., Sommen, F.: Discrete Clifford analysis: a germ of function theory. In: Sabadini, I., et al. (eds.) Hypercomplex Analysis, pp. 37–53. Birkhäuser, Basel (2009)

    MATH  Google Scholar 

  4. Cerejeiras, P., Kähler, U., Ku, M., Sommen, F.: Discrete Hardy spaces. J. Fourier Anal. Appl. 20, 715–750 (2014)

    Article  MathSciNet  Google Scholar 

  5. Cerejeiras, P., Kähler, U., Ku, M.: Discrete Hilbert boundary value problems on half lattices. J. Differ. Equ. Appl. 21(12), 1–28 (2015)

    Article  MathSciNet  Google Scholar 

  6. Chelkak, D., Smirnov, S.: Discrete complex analysis on isoradial graphs. Adv. Math. 228, 1590–1630 (2011)

    Article  MathSciNet  Google Scholar 

  7. Chelkak, D., Smirnov, S.: Universality in the 2D Ising model and conformal invariance of fermionic observables. Invent. Math. 189(3), 515–580 (2012)

    Article  MathSciNet  Google Scholar 

  8. Courant, R., Friedrichs, K., Lewy, H.: Uber die partiellen Differenzengleichungen der mathematischen Physik. Math. Ann. 100, 32–74 (1928)

    Article  MathSciNet  Google Scholar 

  9. De Ridder, H., De Schepper, H., Kähler, U., Sommen, F.: Discrete function theory based on skew Weyl relations. Proc. Am. Math. Soc. 138(9), 3241–3256 (2010)

    Article  MathSciNet  Google Scholar 

  10. Duffin, R.J.: Basic properties of discrete analytic functions. Duke Math. J. 23(2), 335–363 (1956)

    Article  MathSciNet  Google Scholar 

  11. Gakhov, F.D.: Boundary Value Problems. Pergamon Press, New York (1966)

    Book  Google Scholar 

  12. Ghiloni, R., Perotti, A.: Slice regular functions on real alternative algebras. Adv. Math. 226(2), 1662–1691 (2011)

    Article  MathSciNet  Google Scholar 

  13. Gürlebeck, K., Habetha, K., Sprößig, W.: Holomorphic Functions in the Plane and \(n\)-Dimensional Space. Birkhäuser, Berlin (2008)

    MATH  Google Scholar 

  14. Gürlebeck, K., Hommel, A.: On finite difference Dirac operators and their fundamental solutions. Adv. Appl. Clifford Algebras 11, 89–106 (2001)

    Article  MathSciNet  Google Scholar 

  15. Gürlebeck, K., Sprößig, W.: Quaternionic Analysis and Elliptic Boundary Value Problems. Birkhäuser, Berlin (1989)

    MATH  Google Scholar 

  16. Halmos, P.: Measure Theory. Springer, New York (1974)

    MATH  Google Scholar 

  17. Jost, J.: Partial Differential Equations. Springer, New York (2002)

    MATH  Google Scholar 

  18. Kenyon, R.: Conformal invariance of domino tiling. Ann. Probab. 28(2), 759–795 (1999)

    MathSciNet  MATH  Google Scholar 

  19. Ku, M., Kähler, U.: Numerical null solutions to iterated Dirac operator on bounded domains. Complex Anal. Oper. Theory 11(2), 307–328 (2017)

    Article  MathSciNet  Google Scholar 

  20. Ku, M., Kähler, U.: Riemann boundary value problems on half space in Clifford analysis. Math. Methods Appl. Sci. 35(18), 2141–2156 (2012)

    Article  MathSciNet  Google Scholar 

  21. Muskhelishvih, N.I.: Singular Integral Equations. Noordhoff, Gromingen (1972)

    Google Scholar 

  22. Ren, G.B., Wang, H.Y.: Octonion analysis of several variables. Commun. Math. Stat. 2(2), 163–185 (2014)

    Article  MathSciNet  Google Scholar 

  23. Ren, G.B., Zhu, Z.P.: A convergence relation between discrete and continuous regular quaternionic functions. Adv. Appl. Clifford Algebras 27(2), 1715–1740 (2017)

    Article  MathSciNet  Google Scholar 

  24. Shivakumar, P.N., Wong, R.: Asymptotic expansion of multiple Fourier transforms. SIAM J. Math. Anal. 10(6), 1095–1104 (1979)

    Article  MathSciNet  Google Scholar 

  25. Skopenkov, M.: The boundary value problem for discrete analytic functions. Adv. Math. 240, 61–87 (2013)

    Article  MathSciNet  Google Scholar 

  26. Sudbery, A.: Quaternionic Analysis. Math. Proc. Camb. Philos. Soc. 85(2), 199–225 (1979)

    Article  MathSciNet  Google Scholar 

  27. Thomée, V.: Discrete interior Schauder estimates for elliptic difference operators. SIAM J. Numer. Anal. 5, 626–645 (1968)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zeping Zhu.

Ethics declarations

Conflict of interest

We declare that we have no financial and personal relationships with other people or organizations that can inappropriately influence our work, there is no professional or other personal interest of any nature or kind in any product, service and company that could be construed as influencing the position presented in, or the review of, this manuscript.

Additional information

Communicated by Ngaiming Mok.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was supported by the NNSF of China (11371337).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, G., Zhu, Z. Plemelj projections in discrete quaternionic analysis. Math. Ann. 382, 975–1025 (2022). https://doi.org/10.1007/s00208-020-02142-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-020-02142-x

Mathematics Subject Classification

Navigation