Skip to main content
Log in

Lipschitz estimates in quasi-Banach Schatten ideals

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

We study the class of functions f on \({\mathbb {R}}\) satisfying a Lipschitz estimate in the Schatten ideal \({\mathcal {L}}_p\) for \(0 < p \le 1\). The corresponding problem with \(p\ge 1\) has been extensively studied, but the quasi-Banach range \(0< p < 1\) is by comparison poorly understood. Using techniques from wavelet analysis, we prove that Lipschitz functions belonging to the homogeneous Besov class \({\dot{B}}^{\frac{1}{p}}_{\frac{p}{1-p},p}({\mathbb {R}})\) obey the estimate

$$\begin{aligned} \Vert f(A)-f(B)\Vert _{p} \le C_{p}(\Vert f'\Vert _{L_{\infty }({\mathbb {R}})}+\Vert f\Vert _{{\dot{B}}^{\frac{1}{p}}_{\frac{p}{1-p},p}({\mathbb {R}})})\Vert A-B\Vert _{p} \end{aligned}$$

for all bounded self-adjoint operators A and B with \(A-B\in {\mathcal {L}}_p\). In the case \(p=1\), our methods recover and provide a new perspective on a result of Peller that \(f \in {\dot{B}}^1_{\infty ,1}\) is sufficient for a function to be Lipschitz in \({\mathcal {L}}_1\). We also provide related Hölder-type estimates, extending results of Aleksandrov and Peller. In addition, we prove the surprising fact that non-constant periodic functions on \({\mathbb {R}}\) are not Lipschitz in \({\mathcal {L}}_p\) for any \(0< p < 1\). This gives counterexamples to a 1991 conjecture of Peller that \(f \in {\dot{B}}^{1/p}_{\infty ,p}({\mathbb {R}})\) is sufficient for f to be Lipschitz in \({\mathcal {L}}_p\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aleksandrov, A.B., Peller, V.V.: Hankel and Toeplitz-Schur multipliers. Math. Ann. 324(2), 277–327 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  2. Aleksandrov, A.B., Peller, V.V.: Functions of operators under perturbations of class \({ S}_p\). J. Funct. Anal. 258(11), 3675–3724 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  3. Aleksandrov, A.B., Peller, V.V.: Operator Hölder-Zygmund functions. Adv. Math. 224(3), 910–966 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. Aleksandrov, A.B., Peller, V.V.: Operator Lipschitz functions. Uspekhi Mat. Nauk 71(4), 3–106 (2016)

    MathSciNet  MATH  Google Scholar 

  5. Aleksandrov, A.B., Peller, V.V.: Schur multipliers of Schatten-von Neumann classes \({ S}_p\). J. Funct. Anal. 279(8), 108683 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  6. Arazy, J., Barton, T.J., Friedman, Y.: Operator differentiable functions. Integr. Equ. Oper. Theory 13(4), 462–487 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  7. Birman, M.S., Solomyak, M.Z.: Double Stieltjes operator integrals. Problems in Mathematical Physics, No I, Spectral Theory and Wave Processes (Russian), pp. 33–67. Izdat Leningrad University, Leningrad (1966)

    Google Scholar 

  8. Birman, M.S., Solomyak, M.Z.: Double Stieltjes operator integrals. II. Problems of Mathematical Physics, No 2, Spectral Theory, Diffraction Problems (Russian), pp. 26–60. Izdat Leningrad University, Leningrad (1967)

    Google Scholar 

  9. Birman, M.S., Solomjak, M.Z.: Double Stieltjes operator integrals. III. In: Problems of Mathematical Physics, No. 6 (Russian), pp. 27–53. Izdat. Leningrad. Univ., Leningrad (1973)

  10. Birman, M.S., Solomyak, M.Z.: Estimates for the singular numbers of integral operators. Uspehi Mat. Nauk 32(1), 17–84 (1977)

    MathSciNet  MATH  Google Scholar 

  11. Birman, M.S., Solomyak, M.Z.: Double operator integrals in a Hilbert space. Integr. Equ. Oper. Theory 47(2), 131–168 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  12. Bourdaud, G.: Ondelettes et espaces de Besov. Rev. Mat. Iberoamericana 11(3), 477–512 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  13. Caspers, M., Potapov, D., Sukochev, F., Zanin, D.: Weak type estimates for the absolute value mapping. J. Oper. Theory 73(2), 361–384 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  14. Caspers, M., Potapov, D., Sukochev, F., Zanin, D.: Weak type commutator and Lipschitz estimates: Resolution of the Nazarov-Peller conjecture. Am. J. Math. 141(3), 593–610 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  15. Cohen, A.: Numerical Analysis of Wavelet Methods. Studies in Mathematics and its Applications, vol. 32. North-Holland Publishing Co, Amsterdam (2003)

    Google Scholar 

  16. Daleckiĭ, YuL, Kreĭn, S.G.: Formulas of differentiation according to a parameter of functions of Hermitian operators. Doklady Akad. Nauk SSSR 76, 13–16 (1951)

    MathSciNet  Google Scholar 

  17. Daleckiĭ, Y.L., Kreĭn, S.G.: Integration and differentiation of functions of Hermitian operators and applications to the theory of perturbations. Voronež. Gos. Univ. Trudy Sem. Funkcional. Anal. 1, 81–105 (1956)

    MathSciNet  Google Scholar 

  18. Daubechies, I.: Orthonormal bases of compactly supported wavelets. Comm. Pure Appl. Math. 41(7), 909–996 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  19. Davies, E.B.: Lipschitz continuity of functions of operators in the Schatten classes. J. Lond. Math. Soc. 37(1), 148–157 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  20. Dodds, P.G., Dodds, T.K., de Pagter, B., Sukochev, F.A.: Lipschitz continuity of the absolute value and Riesz projections in symmetric operator spaces. J. Funct. Anal. 148(1), 28–69 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  21. Dodds, P.G., Sukochev, F.A.: Submajorisation inequalities for convex and concave functions of sums of measurable operators. Positivity 13(1), 107–124 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  22. Farforovskaja, J.B.: An example of a Lipschitzian function of selfadjoint operators that yields a nonnuclear increase under a nuclear perturbation. Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 30, 146–153 (1972). Investigations of linear operators and the theory of functions, III

    MathSciNet  MATH  Google Scholar 

  23. Federer, H.: Geometric measure theory, Band 153. Die Grundlehren der mathematischen Wissenschaften. Springer, New York (1969)

    Google Scholar 

  24. Frazier, M., Jawerth, B., Weiss, G.: Littlewood-Paley theory and the study of function spaces, volume 79 of CBMS Regional Conference Series in Mathematics. Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI (1991)

  25. Gohberg, I.C., Kreĭn, M.G.: Introduction to the theory of linear nonselfadjoint operators. Translated from the Russian by A. Feinstein. Translations of Mathematical Monographs, Vol. 18. American Mathematical Society, Providence, R.I. (1969)

  26. Grafakos, L.: Classical Fourier Analysis, Volume 249 of Graduate Texts in Mathematics, 3rd edn. Springer, New York (2014)

    Book  Google Scholar 

  27. Grafakos, L.: Modern Fourier Analysis, Volume 250 of Graduate Texts in Mathematics, 3rd edn. Springer, New York (2014)

    Google Scholar 

  28. Huang, J., Sukochev, F., Zanin, D.: Operator \(\theta \)-Hölder functions with respect to \(\Vert \cdot \Vert _p\), \(0 < p \le \infty .\) (2021) (submitted manuscript)

  29. Kato, T.: Continuity of the map \(S\mapsto |S|\) for linear operators. Proc. Jpn. Acad. 49(1), 157–160 (1973)

    MathSciNet  MATH  Google Scholar 

  30. Kissin, E., Shulman, V.S.: Classes of operator-smooth functions. I. Operator-Lipschitz functions. Proc. Edinb. Math. Soc. 48(1), 151–173 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  31. Kosaki, H.: On the continuity of the map \(\varphi \rightarrow |\varphi |\) from the predual of a \(W^{\ast } \)-algebra. J. Funct. Anal. 59(1), 123–131 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  32. Lord, S., Sukochev, F., Zanin, D.: Singular traces, Volume 46 of De Gruyter Studies in Mathematics, vol. 46. De Gruyter, Berlin (2013)

    Google Scholar 

  33. Meyer, Y.: Wavelets and Operators, Volume 37 of Cambridge Studies in Advanced Mathematics, vol. 37. Cambridge University Press, Cambridge (1992). Translated from the 1990 French original by D. H. Salinger

    Google Scholar 

  34. Peetre, J.: New thoughts on Besov spaces. Duke University Mathematics Series, No. 1. Mathematics Department, Duke University, Durham (1976)

  35. Peller, V.V.: For which \(f\) does \(A-B\in S_p\) imply that \(f(A)-f(B)\in S_p\)? In Operators in indefinite metric spaces, scattering theory and other topics (Bucharest 1985) Oper. Theory Adv. Appl. 4, 289–294 (1987)

    Google Scholar 

  36. Peller, V.V.: Hankel operators in the perturbation theory of unbounded selfadjoint operators. In Analysis and partial differential equations, volume 122 of Lecture Notes in Pure and Appl. Math. Dekker, New York, pp. 529–544 (1990)

  37. Peller, V.V.: The behavior of functions of operators under perturbations. In a glimpse at Hilbert space operators. Oper. Theory Adv. Appl. 207, 287–324 (2010)

    MATH  Google Scholar 

  38. Peng, L.Z.: Wavelets and paracommutators. Ark. Mat. 31(1), 83–99 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  39. Pisier, G.: Similarity Problems And Completely Bounded Maps, Volume 1618 of Lecture Notes in Mathematics, vol. 1618. Springer, Berlin (2001). Includes the solution to The Halmos problem

    Google Scholar 

  40. Potapov, D., Sukochev, F.: Operator-Lipschitz functions in Schatten-von Neumann classes. Acta Math. 207(2), 375–389 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  41. Ricard, É.: Hölder estimates for the noncommutative Mazur maps. Arch. Math. (Basel) 104(1), 37–45 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  42. Ricard, É.: Fractional powers on noncommutative \(L_p\) for \(p<1\). Adv. Math. 333, 194–211 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  43. Rotfel’d, S.J.: The singular values of the sum of completely continuous operators. Probl. Math. Phys. Spectr. Theory (Russian) 3, 81–87 (1968)

    MathSciNet  MATH  Google Scholar 

  44. Rotfel’d, S.J.: Asymptotic behavior of the spectrum of abstract integral operators. Trudy Moskov. Mat. Obšč. 34, 105–128 (1977)

    MathSciNet  Google Scholar 

  45. Sawano, Y.: Theory of Besov spaces. Developments in Mathematics, vol. 56. Springer, Singapore (2018)

    Google Scholar 

  46. Simon, B.: Trace ideals and their applications, volume 120 of Mathematical Surveys and Monographs. American Mathematical Society, Providence (2005)

  47. Skripka, A., Tomskova, A.: Multilinear operator integrals, theory and applications. Lecture Notes in Mathematics. Springer, Cham (2019)

    Google Scholar 

  48. Smith, R.R.: Completely bounded module maps and the Haagerup tensor product. J. Funct. Anal. 102(1), 156–175 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  49. Sobolev, A.V.: Functions of self-adjoint operators in ideals of compact operators. J. Lond. Math. Soc. 95(1), 157–176 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  50. Triebel, H.: Theory of function spaces. Monographs in Mathematics, vol. 78. Birkhäuser Verlag, Basel (1983)

    Google Scholar 

  51. Triebel, H.: Function spaces and wavelets on domains, volume 7 of EMS Tracts in Mathematics. European Mathematical Society (EMS), Zürich (2008)

Download references

Funding

This research was funded by Australian Research Council, Grant no [FL170100052].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edward McDonald.

Additional information

Communicated by Loukas Grafakos.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: Automatic complete boundedness of \({\mathcal {L}}_p\)-bounded Schur multipliers

Appendix A: Automatic complete boundedness of \({\mathcal {L}}_p\)-bounded Schur multipliers

The following is a recently published result of Aleksandrov and Peller [5, Theorem 3.1].

Theorem A.0.1

Let \(A \in M_n({\mathbb {C}})\) be a matrix, where \(1\le n\le \infty \). Let \(N\ge 1\) and denote by \(\mathrm {id}_{M_N({\mathbb {C}})}\) the \(N\times N\) matrix with all entries equal to 1. Then for all \(0< p < 1\) we have

$$\begin{aligned} \Vert A\Vert _{\mathrm {m}_p} = \Vert A\otimes \mathrm {id}_{M_{N}({\mathbb {C}})}\Vert _{\mathrm {m}_p}. \end{aligned}$$

In other words, bounded Schur multipliers of \({\mathcal {L}}_p\) are automatically completely bounded. The analogous statement for \(p=1\) is well-known, see [39, Theorem 5.1]. For the sake of completeness we include a proof of Theorem A.0.1. The proof is different from that of [5], and is instead closely modelled on a proof for the \(p=1\) case due to Smith [48, Theorem 2.1].

Recall that we denote by \(\ell _2^n\) the n-dimensional Hilbert space.

Proof of Theorem A.0.1

Let \(1\le n\le \infty \) and \(N\ge 1\). Let \(u \in \ell _2^n\otimes \ell _2^N\) be a unit vector. Write the components of u as \(u =\sum _{j,l} u_{j,l}e_j\otimes e_l\). Consider the mapping:

$$\begin{aligned} Q_u:\ell _2^n\rightarrow \ell _2^n\otimes \ell _2^N \end{aligned}$$

given by

$$\begin{aligned} Q_{u}e_j = {\left\{ \begin{array}{ll} (\sum _{l=1}^N |u_{j,l}|^2)^{-1/2}\sum _{l=1}^N u_{j,l}e_j\otimes e_l,&{}\text { if } \sum _{l=1}^N |u_{j,l}|^2 \ne 0\\ 0,&{}\text { otherwise.} \end{array}\right. } \end{aligned}$$

The adjoint of \(Q_u\) is easily computed. We have

$$\begin{aligned} Q_u^*(e_{j}\otimes e_l) = e_j{\overline{u}}_{j,l}(\sum _{r=1}^N |u_{j,r}|^2)^{-1/2},\quad 1\le j\le n,\, 1\le l\le N \end{aligned}$$

or \(Q_u^*(e_j\otimes e_l) = 0\) if \(\sum _{r=1}^N |u_{j,r}|^2 = 0\).

Then we compute \(Q_u^*Q_ue_j\). If \(\sum _{l=1}^N |u_{j,l}|^2 = 0\) then \(Q_u^*Q_ue_j = 0\) and so assuming otherwise we have for every \(1\le j\le n\),

$$\begin{aligned} Q_u^*Q_ue_j&= \left( \sum _{l=1}^N |u_{j,l}|^2\right) ^{-1/2}\sum _{r=1}^N u_{j,r}Q_u^*(e_{j}\otimes e_r)\\&= \left( \sum _{l=1}^N |u_{j,l}|^2\right) ^{-1/2}\sum _{r=1}^N u_{j,r}{\overline{u}}_{j,r}(\sum _{l=1}^N |u_{j,l}|^2)^{-1/2}e_j\\&= e_j \cdot \frac{\sum _{r=1}^N |u_{j,r}|^2}{\sum _{r=1}^N |u_{j,r}|^2}\\&= e_j. \end{aligned}$$

So \(Q_u\) is indeed a contraction.

Given \(u \in \ell _2^n\otimes \ell _2^N\), define \({\widetilde{u}} \in \ell _{2}^n\) as,

$$\begin{aligned} {\widetilde{u}} = \sum _{j=1}^n (\sum _{l=1}^N |u_{j,l}|^2)^{1/2}e_j. \end{aligned}$$

We have that \(\Vert {\widetilde{u}}\Vert _{\ell _2^n} = \Vert u\Vert _{\ell _2^n\otimes \ell _2^N}\).

We now assert that

$$\begin{aligned} (\mathrm {id}_{M_N({\mathbb {C}})}\otimes A)\circ (u\otimes v) = Q_u(A\circ {\widetilde{u}}\otimes {\widetilde{v}})Q_v^*. \end{aligned}$$
(A.1)

It suffices to check (A.1) entrywise. On the left hand side, we have

$$\begin{aligned} \langle e_{j,l_1},(\mathrm {id}_{M_N({\mathbb {C}})}\otimes A)\circ (u\otimes v)e_{k,l_2}\rangle = A_{j,k}u_{j,l_1}\overline{v_{k,l_2}}, \quad 1\le j\le n, 1\le k\le n, 1\le l_1,l_2\le N \end{aligned}$$

and on the right

$$\begin{aligned}&\langle e_{j,l_1},Q_u(A\circ ({\widetilde{u}}\otimes {\widetilde{v}}))Q_v^*e_{k,l_2}\rangle = \langle Q_u^*e_{j,l_1},(A\circ {\widetilde{u}}\otimes {\widetilde{v}})Q_v^*e_{k,l_2}\rangle \\&= u_{j,l_1}\overline{v_{k,l_2}}(\sum _{r=1}^N |u_{j,r}|^2)^{-1/2}(\sum _{r=1}^N |u_{k,r}|^2)^{-1/2}\langle e_j,(A\circ {\widetilde{u}}\otimes {\widetilde{v}})e_k\rangle \\&= A_{j,k}u_{j,l_1}\overline{v_{k,l_2}}. \end{aligned}$$

This verifies (A.1).

Since \(Q_u\) and \(Q_v\) are contractions, (A.1) implies that

$$\begin{aligned} \Vert (\mathrm {id}_{M_N({\mathbb {C}})}\otimes A)\circ (u\otimes v)\Vert _{p} \le \Vert A\Vert _{\mathrm {m}_p}\Vert u\Vert _{\ell _2^n\otimes \ell _2^N}\Vert v\Vert _{\ell _2^n\otimes \ell _2^N}. \end{aligned}$$

Taking the supremum over \(u,v \in \ell _2^n\otimes \ell _2^N\) with norm at most 1 and using Lemma 2.2.1 yields the conclusion

$$\begin{aligned} \Vert \mathrm {id}_{M_N({\mathbb {C}})}\otimes A\Vert _{\mathrm {m}_p} \le \Vert A\Vert _{\mathrm {m}_p}. \end{aligned}$$

The reverse inequality is clear. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McDonald, E., Sukochev, F. Lipschitz estimates in quasi-Banach Schatten ideals. Math. Ann. 383, 571–619 (2022). https://doi.org/10.1007/s00208-021-02247-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-021-02247-x

Navigation