Skip to main content
Log in

Hardy spaces for a class of singular domains

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

We set a framework for the study of Hardy spaces inherited by complements of analytic hypersurfaces in domains with a prior Hardy space structure. The inherited structure is a filtration, various aspects of which are studied in specific settings. For punctured planar domains, we prove a generalization of a famous rigidity lemma of Kerzman and Stein. A stabilization phenomenon is observed for egg domains. Finally, using proper holomorphic maps, we derive a filtration of Hardy spaces for certain power-generalized Hartogs triangles, although these domains fall outside the scope of the original framework.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aronszajn, N.: Theory of reproducing kernels. Trans. AMS 68(3), 337–404 (1950)

    Article  MathSciNet  Google Scholar 

  2. Baratchart, L., Fischer, Y., Leblond, J.: Dirichlet/Neumann problems and Hardy classes for the planar conductivity equation. Complex Var. Elliptic Equ. 59(4), 504–538 (2014)

    Article  MathSciNet  Google Scholar 

  3. Barrett, D.E., Lanzani, L.: The spectrum of the Leray transform for convex Reinhardt domains in \(\mathbb{C}^2\). J. Funct. Anal. 257(9), 2780–2819 (2009)

    Article  MathSciNet  Google Scholar 

  4. Bell, S.R.: The Cauchy transform, potential theory and conformal mapping. CRC Press, Boca Raton (1992)

    Google Scholar 

  5. Chakrabarti, D., Shaw, M.-C.: Sobolev regularity of the \(\overline{\partial }\)-equation on the Hartogs triangle. Math. Ann. 356(1), 241–258 (2013)

    Article  MathSciNet  Google Scholar 

  6. Chakrabarti, D., Zeytuncu, Y.: \({L}^p\) mapping properties of the Bergman projection on the Hartogs triangle. Proc. Am. Math. Soc. 144(4), 1643–1653 (2016)

    Article  Google Scholar 

  7. Chakrabarti, D., Edholm, L., McNeal, J.: Duality and approximation of Bergman spaces. Adv. Math. 341, 616–656 (2019)

    Article  MathSciNet  Google Scholar 

  8. Chaumat, J., Chollet, A.-M.: Régularité höldérienne de l’opérateur \(\overline{\partial }\) sur le triangle de Hartogs. Ann. Inst. Fourier (Grenoble) 41(4), 867–882 (1991)

    Article  MathSciNet  Google Scholar 

  9. L. Chen and J. D. McNeal: A solution operator for \(\overline{\partial }\) on the Hartogs triangle and \({L}^p\) estimates. Math. Ann. (to appear)

  10. Chirka, E.M.: Complex analytic sets, vol. 46. Springer Science & Business Media, Berlin (2012)

    MATH  Google Scholar 

  11. Dales, H.G.: The ring of holomorphic functions on a Stein compact set as a unique factorization domain. Proc. Am. Math. Soc. 44(1), 88–92 (1974)

    Article  MathSciNet  Google Scholar 

  12. Duren, P.L.: Theory of \(H^p\) Spaces. Academic press, Cambridge (1970)

    MATH  Google Scholar 

  13. Edholm, L.: Bergman theory of certain generalized Hartogs triangles. Pac. J. Math. 284(2), 327–342 (2016)

    Article  MathSciNet  Google Scholar 

  14. Edholm, L., McNeal, J.: The Bergman projection on fat Hartogs triangles: \({L}^p\) boundedness. Proc. Am. Math. Soc. 144(5), 2185–2196 (2016)

    Article  Google Scholar 

  15. Edholm, L., McNeal, J.: Bergman subspaces and subkernels: Degenerate \({L}^p\) mapping and zeroes. J. Geom. Anal. 27(4), 2658–2683 (2017)

    Article  MathSciNet  Google Scholar 

  16. Hansson, T.: On Hardy spaces in complex ellipsoids. Ann. Inst. Fourier (Grenoble) 49(5), 1477–1501 (1999)

    Article  MathSciNet  Google Scholar 

  17. Huo, Z., Wick, B.D.: Weighted estimates for the Bergman projection on the Hartogs triangle. J. Funct. Anal. 279(9), 108727 (2020)

    Article  MathSciNet  Google Scholar 

  18. Kerzman, N., Stein, E.M.: The Cauchy kernel, the Szegő kernel, and the Riemann mapping function. Math. Ann. 236(1), 85–93 (1978)

    Article  MathSciNet  Google Scholar 

  19. Lanzani, L.: Szegő projection vs. potential theory for non-smooth planar domains. Indiana U. Math. J. 48(2), 537–555 (1998)

    MATH  Google Scholar 

  20. Laurent-Thiébaut, C., Shaw, M.-C.: Solving \(\overline{\partial }\) with prescribed support on Hartogs triangles in \(\mathbb{C}^2\) and \(\mathbb{CP}^2\). Trans. Am. Math. Soc. 371(9), 6531–6546 (2019)

    Article  Google Scholar 

  21. Ma, L., Michel, J.: \(\cal{C}^{k,\alpha }\)-estimates for the \(\overline{\partial }\)-equation on the Hartogs triangle. Math. Ann. 294(1), 661–675 (1992)

    Article  MathSciNet  Google Scholar 

  22. A. Monguzzi: Holomorphic function spaces on the Hartogs triangle. Math. Nachr. (to appear)

  23. A. Nagel and M. Pramanik. Bergman spaces under maps of monomial type. arXiv preprint arXiv:2002.02915, 2020

  24. Ohsawa, T.: Analysis of several complex variables, 211th edn. American Mathematical Society, Providence (2002)

    Book  Google Scholar 

  25. Poletsky, E.A., Stessin, M.I.: Hardy and Bergman spaces on hyperconvex domains and their composition operators. Indiana Univ. Math. J. 57(5), 2153–2201 (2008)

    Article  MathSciNet  Google Scholar 

  26. Pommerenke, C.: Boundary behaviour of conformal maps, vol. 299. Springer Science & Business Media, Berlin (2013)

    MATH  Google Scholar 

  27. Rademacher, H., Toeplitz, O.: The enjoyment of mathematics. Princeton U. press, Princeton (1957)

    Book  Google Scholar 

  28. Sahin, S.: Poletsky-Stessin Hardy spaces on Complex Ellipsoids in \(\mathbb{C}^n\). Complex Anal. Oper. Theory 10(2), 295–309 (2016)

    Article  MathSciNet  Google Scholar 

  29. Shaw, M.-C.: The Hartogs triangle in complex analysis. Contemp. Math. 646, (2015)

  30. Stein, E.M.: Boundary behavior of holomorphic functions of several complex variables.(MN-11). Princeton University Press, Princeton (2015)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Vivas.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

L. Lanzani and L. Vivas were supported in part by the National Science Foundation (DMS-1901978 and DMS-1800777). P. Gupta was supported in part by a UGC CAS-II grant (Grant No. F.510/25/CAS-II/ 2018(SAP-I)). Part of this work took place at the Banff International Research station during a workshop of the Women in Analysis (WoAn), an AWM Research Network. We are grateful to the Institute for its kind hospitality and to the Association of Women in Mathematics for its generous support. We also wish to thank Mei-Chi Shaw for providing the inspiration for this work, Björn Gustafsson for offering helpful feedback on an earlier version of this manuscript, and the anonymous referee for their useful comments.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gallagher, AK., Gupta, P., Lanzani, L. et al. Hardy spaces for a class of singular domains. Math. Z. 299, 2171–2197 (2021). https://doi.org/10.1007/s00209-021-02755-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-021-02755-1

Navigation