Skip to main content
Log in

Theoretical investigations of the charge transfer properties of anthracene derivatives

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

The simulated structure of 9,10-bis(methylthio)anthracene (1) has been compared with experimental parameters, then by applying the same methodology crystal structures of designed derivatives 9,10-bis(trifluoromethylthio)anthracene (2), 9,10-bis(methylselleno)anthracene (3) and 9,10-bis(trifluoromethylselleno)anthracene (4) have been simulated. By employing a diabatic model and a first-principle direct method, we have investigated carrier transport properties. The reorganization energies have been computed at the DFT (B3LYP/6-31G*) level. The transfer integrals have been calculated for a wide variety of nearest-neighbor charge transfer pathways. The reorganization energies and transfer integrals showed that 1, 3, and 4 would be good both for hole and electron transport and 2 hole transfer material. The 2 and 4 derivatives would enhance the photostability as well.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Horowitz G, Hajlaoui ME (2000) Adv Mater 12:1046

    Article  CAS  Google Scholar 

  2. Huitema HEA, Gelinck GH, van der Putten JBPH, Kuijk KE, Hart CM, Cantatore E, de Leeuw DM (2002) Adv Mater 14:1201

    Article  CAS  Google Scholar 

  3. Halls JJM, Walsh CA, Greenham NC, Marseglia EA, Friend RH, Moratti SC, Holmes AB (1995) Nature 376:498

    Article  CAS  Google Scholar 

  4. Brabec CJ, Sariciftci NS, Hummelen JC (2001) Adv Funct Mater 11:15

    Article  CAS  Google Scholar 

  5. Tsumura A, Koezuka H, Ando T (1986) Appl Phys Lett 49:1210

    Article  CAS  Google Scholar 

  6. Kuszman A, Kapovits L (1985) In: Csizmadia IG, Mangini A (eds) Organic sulfur chemistry: theoretical and experimental advances. Elsevier, Amsterdam, p 191

    Google Scholar 

  7. Sudha N, Singh HB (1994) Coord Chem Rev 135–136:469

    Article  Google Scholar 

  8. Takimiya K, Kunugi Y, Konda Y, Niihara N, Otsubo T (2004) J Am Chem Soc 126:5084

    Article  CAS  Google Scholar 

  9. Janzen DE, Burand MW, Ewbank PC, Pappenfus TM, Higuchi H, da Silva Filho DA, Young VG, Bredas JL, Mann KR (2004) J Am Chem Soc 126:15295

    Article  CAS  Google Scholar 

  10. Bushey ML, Nguyen TQ, Zhang W, Horoszewski D, Nuckolls C (2004) Angew Chem Int Ed 43:5446

    Article  CAS  Google Scholar 

  11. Wurthner F (2001) Angew Chem Int Ed 40:1037

    Article  CAS  Google Scholar 

  12. Fritz SE, Martin SM, Frisbie CD, Ward MD, Toney MF (2004) J Am Chem Soc 126:4084

    Article  CAS  Google Scholar 

  13. Kobayashi K, Masu H, Shuto A, Yamaguchi K (2005) Chem Mater 17:6666

    Article  CAS  Google Scholar 

  14. Bredas JL, Beljonne D, Coropceanu V, Cornil J (2004) Chem Rev 104:4971

    Article  CAS  Google Scholar 

  15. Coropceanu V, Cornil J, da Silva Filho DA, Olivier Y, Silbey R, Bredas JL (2007) Chem Rev 107:926

    Article  CAS  Google Scholar 

  16. Cornil J, Lemaur V, Calbert JP, Bredas JL (2002) Adv Mater 14:726

    Article  CAS  Google Scholar 

  17. Andrienko D, Kirkpatrick J, Marcon V, Nelson J, Kremer K (2008) Phys Stat Sol b 245:830

    Article  CAS  Google Scholar 

  18. He YH, Hui RJ, Yi YP, Shuai ZG (2008) Chin J Chem 26:1005

    Article  CAS  Google Scholar 

  19. Myerson AS (1999) Molecular modeling applications in crystallization. Cambridge University Press, New York

    Book  Google Scholar 

  20. van Langevelde A, Capkova P, Sonneveld E, Schenk H, Trchova M, Ilavsky M (1999) J Synchrotron Radiat 6:1035

    Article  Google Scholar 

  21. Liu YH, Xie Y, Lu ZY (2009) Chem Phys. doi:10.1016/j.chemphys.2009.11.015 (in press)

  22. Yang GY, Hanack M, Lee YW, Chen Y, Lee MKY, Dini D (2003) Chem Eur J 9:2758

    Article  CAS  Google Scholar 

  23. Becke AD (1993) J Chem Phys 98:5648

    Article  CAS  Google Scholar 

  24. Lee C, Yang W, Parr RG (1988) Phys Rev B 41:785

    Article  Google Scholar 

  25. Stephens PJ, Devlin FJ, Chabalowski CF, Frisch MJ (1994) J Phys Chem 98:11623

    Article  CAS  Google Scholar 

  26. MS Modeling, Release 3.0.1. (2004) Accelrys Inc., San Diego, CA

  27. Liu JX, Dong M, Qin ZF, Wang JG (2004) J Mole Struct Theochem 679:95

    Article  CAS  Google Scholar 

  28. Klemm E, Wang JG, Emig G (1998) Micropor Mesopor Mater 26:11

    Article  CAS  Google Scholar 

  29. Fried JR, Weaver S (1998) Comp Mater Sci 11:277

    Article  CAS  Google Scholar 

  30. Mayo SL, Olafson BD, Goddard WA (1990) J Phys Chem 94:8897

    Article  CAS  Google Scholar 

  31. Ewald PP (1921) Ann Phys 64:253

    Article  Google Scholar 

  32. Marcus RA, Sutin N (1985) Biochim Biophys Acta 811:265

    CAS  Google Scholar 

  33. Gruhn NE, da Silva Filho DA, Bill TG, Malagoli M, Coropceanu V, Kahn A, Brédas JL (2002) J Am Chem Soc 124:7918

    Article  CAS  Google Scholar 

  34. Reimers JR (2001) J Chem Phys 115:9103

    Article  CAS  Google Scholar 

  35. Irfan A, Cui RH, Zhang JP (2009) Theor Chem Acc 122:275

    Article  CAS  Google Scholar 

  36. Coropceanu V, Nakano T, Gruhn NE, Kwon O, Yade T, Katsukawa K, Brédas JL (2006) J Phys Chem B 110:9482

    Article  CAS  Google Scholar 

  37. Soos ZG, Tsiper EV, Painelli A (2004) J Lumin 110:332

    Article  CAS  Google Scholar 

  38. Tsiper EV, Soos ZG (2003) Phys Rev B 68:085301

    Article  Google Scholar 

  39. Tsiper EV, Soos ZG, Gao W, Kahn A (2002) Chem Phys Lett 360:47

    Article  CAS  Google Scholar 

  40. Lin BC, Cheng CP, You ZQ, Hsu CP (2005) J Am Chem Soc 127:66

    Article  CAS  Google Scholar 

  41. Troisi A, Orlandi G (2001) Chem Phys Lett 344:509

    Article  CAS  Google Scholar 

  42. Yin SW, Yi YP, Li QX, Yu G, Liu YQ, Shuai ZG (2006) J Phys Chem A 110:7138

    Article  CAS  Google Scholar 

  43. Valeev EF, Coropceanu V, da Silva Filho DA, Salman S, Bredas JL (2006) J Am Chem Soc 128:9882

    Article  CAS  Google Scholar 

  44. Yang XD, Li QK, Shuai ZG (2007) Nanotechnology 18:424029

    Article  Google Scholar 

  45. Song YB, Di CA, Yang XD, Li SP, Xu W, Liu YQ, Yang LM, Shuai ZG, Zhang DQ, Zhu DB (2006) J Am Chem Soc 128:15940

    Article  CAS  Google Scholar 

  46. Wang CL, Wang FH, Yang XD, Li QK, Shuai ZG (2008) Org Electron 9:635

    Article  CAS  Google Scholar 

  47. Kwiatkowski JJ, Nelson J, Li H, Bredas JL, Wenzel W, Lennartzd C (2008) Phys Chem Chem Phys 10:852

    Article  Google Scholar 

  48. Huang JS, Kertesz M (2004) Chem Phys Lett 390:110

    Article  CAS  Google Scholar 

  49. Wang LJ, Nan GJ, YangD X, Peng Q, Li QK, Shuai ZG (2010) Chem Soc Rev 39:423

    Article  CAS  Google Scholar 

  50. Yang XD, Wang LJ, Wang CL, Long W, Shuai ZG (2008) Chem Mater 20:3205

    Article  CAS  Google Scholar 

  51. Nan GJ, Wang LJ, Yang XD, Shuai ZG, Zhao Y (2009) J Chem Phys 130:024704

    Article  Google Scholar 

  52. Deng WQ, Goddard WA III (2004) J Phys Chem B 108:8614

    Article  CAS  Google Scholar 

  53. Frisch MJ et al (2003) Gaussian 03, Revision A. 1. Gaussian, Pittsburgh

    Google Scholar 

Download references

Acknowledgments

Financial supports from the NSFC (No.50873020; 20773022), NCET-06-0321, and NENU-STB07007 are gratefully acknowledged. A. Irfan acknowledges the financial support from China Scholarship Council and Ministry of Education (MOE), Pakistan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingping Zhang.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

214_2010_752_MOESM1_ESM.pdf

Supplementary material 1 (PDF 1777 kb). Structural parameters of 9,10-bis(methylthio)anthracene (1), geometries, predicted crystal structures of 1, 2, 3,and 4

Rights and permissions

Reprints and permissions

About this article

Cite this article

Irfan, A., Zhang, J. & Chang, Y. Theoretical investigations of the charge transfer properties of anthracene derivatives. Theor Chem Acc 127, 587–594 (2010). https://doi.org/10.1007/s00214-010-0752-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00214-010-0752-4

Keywords

Navigation